Divide-and-Conquer

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
- Divide: divide the input data S in two or more disjoint subsets S_{1}, S_{2}, \ldots
- Recur: solve the subproblems recursively

- Conquer: combine the solutions for S_{1}, S_{2}, \ldots, into a solution for S
\diamond The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
- Divide: partition S into two sequences S_{1} and S_{2} of about $\boldsymbol{n} / 2$ elements each
- Recur: recursively sort S_{1} and S_{2}
- Conquer: merge S_{1} and S_{2} into a unique sorted

Algorithm mergeSort(S, C)
Input sequence S with \boldsymbol{n} elements, comparator \boldsymbol{C}
Output sequence S sorted
according to \boldsymbol{C}
if S.size ()>1
$\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \leftarrow \operatorname{partition}(\boldsymbol{S}, \boldsymbol{n} / 2)$
mergeSort $\left(\boldsymbol{S}_{1}, C\right)$
mergeSort $\left(S_{2}, C\right)$
$S \leftarrow \operatorname{merge}\left(S_{1}, S_{2}\right)$ sequence

Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $n / 2$ elements and implemented by means of a doubly linked list, takes at most $\boldsymbol{b} \boldsymbol{n}$ steps, for some constant \boldsymbol{b}.
Likewise, the basis case $(\boldsymbol{n}<2)$ will take at \boldsymbol{b} most steps.
- Therefore, if we let $T(n)$ denote the running time of merge-sort:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
- That is, a solution that has $\boldsymbol{T}(\boldsymbol{n})$ only on the left-hand side.

Iterative Substitution

- In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: $\quad T(n)=2 T(n / 2)+b n$

$$
\begin{aligned}
& \left.=2\left(2 T\left(n / 2^{2}\right)\right)+b(n / 2)\right)+b n \\
& =2^{2} T\left(n / 2^{2}\right)+2 b n \\
& =2^{3} T\left(n / 2^{3}\right)+3 b n \\
& =2^{4} T\left(n / 2^{4}\right)+4 b n \\
& =\ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i b n
\end{aligned}
$$

- Note that base, $\mathrm{T}(\mathrm{n})=\mathrm{b}$, case occurs when $2^{\mathrm{i}}=\mathrm{n}$. That $\mathrm{is}, \mathrm{i}=\log \mathrm{n}$.
- So,

$$
T(n)=b n+b n \log n
$$

- Thus, $T(n)$ is $O(n \log n)$.

The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess: $\mathrm{T}(\mathrm{n})<\mathrm{cn} \log \mathrm{n}$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+b n \log n \\
& =2(c(n / 2) \log (n / 2))+b n \log n \\
& =c n(\log n-\log 2)+b n \log n \\
& =c n \log n-c n+b n \log n
\end{aligned}
$$

- Wrong: we cannot make this last line be less than on $\log n$

Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess \#2: $\mathrm{T}(\mathrm{n})<\mathrm{cn} \log ^{2} \mathrm{n}$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+b n \log n \\
& =2\left(c(n / 2) \log ^{2}(n / 2)\right)+b n \log n \\
& =c n(\log n-\log 2)^{2}+b n \log n \\
& =c n \log ^{2} n-2 c n \log n+c n+b n \log n \\
& \leq c n \log ^{2} n
\end{aligned}
$$

- $\mathrm{So}, \mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n} \log ^{2} n\right)$.
- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method (Appendix)

- Many divide-and-conquer recurrence equations have the form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Master Method, Example 1

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=4 T(n / 2)+n
$$

Solution: $\log _{b} a=2$, so case 1 says $T(n)$ is $O\left(n^{2}\right)$.

Master Method, Example 2

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{a} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=2 T(n / 2)+n \log n
$$

Solution: $\log _{b} a=1$, so case 2 says $T(n)$ is $O\left(n \log ^{2} n\right)$.

Master Method, Example 3

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=T(n / 3)+n \log n
$$

Solution: $\log _{b} a=0$, so case 3 says $T(n)$ is $O(n \log n)$.

Master Method, Example 4

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=8 T(n / 2)+n^{2}
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=3$, so case 1 says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

Master Method, Example 5

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{a} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=9 T(n / 3)+n^{3}
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=2$, so case 3 says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

Master Method, Example 6

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=T(n / 2)+1 \quad(\text { binary search })
$$

Solution: $\log _{b} a=0$, so case 2 says $T(n)$ is $O(\log n)$.

Master Method, Example 7

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=2 T(n / 2)+\log n \quad \text { (heap construction) }
$$

Solution: $\log _{b} a=1$, so case 1 says $T(n)$ is $O(n)$.

Iterative "Proof" of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern:

$$
\begin{aligned}
T(n) & =a T(n / b)+f(n) \\
& \left.=a\left(a T\left(n / b^{2}\right)\right)+f(n / b)\right)+b n \\
& =a^{2} T\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =\ldots \\
& =a^{\log _{b} n} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right) \\
& =n^{\log _{b} a} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right)
\end{aligned}
$$

- We then distinguish the three ${ }^{i=0}$ cases as
- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series

Integer Multiplication

* Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- We can then define I^{*} J by multiplying the parts and adding:

$$
\begin{aligned}
I^{*} J & =\left(I_{h} 2^{n / 2}+I_{l}\right) *\left(J_{h} 2^{n / 2}+J_{l}\right) \\
& =I_{h} J_{h} 2^{n}+I_{h} J_{l} 2^{n / 2}+I_{l} J_{h} 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $T(n)=4 T(n / 2)+n$, which implies $T(n)$ is $O\left(n^{2}\right)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

* Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- Observe that there is a different way to multiply parts:

$$
\begin{aligned}
I^{*} J & =I_{h} J_{h} 2^{n}+\left[\left(I_{h}-I_{l}\right)\left(J_{l}-J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left[\left(I_{h} J_{l}-I_{l} J_{l}-I_{h} J_{h}+I_{l} J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left(I_{h} J_{l}+I_{l} J_{h}\right) 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $T(n)=3 T(n / 2)+n$, which implies $T(n)$ is $O\left(n^{\log _{2} 3}\right)$, by the Master Theorem.
- Thus, $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$.

