
© 2010 Goodrich, Tamassia Graphs 1

Graphs

ORD

DFW

SFO

LAX



© 2010 Goodrich, Tamassia Graphs 2

Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the 
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



© 2010 Goodrich, Tamassia Graphs 3

Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph
 all the edges are directed

 e.g., route network

 Undirected graph
 all the edges are undirected

 e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles



© 2010 Goodrich, Tamassia Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram



© 2010 Goodrich, Tamassia Graphs 5

Terminology
 End vertices (or endpoints) of 

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5 

 Parallel edges
 h and i are parallel edges

 Self-loop
 j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j



© 2010 Goodrich, Tamassia Graphs 6

P1

Terminology (cont.)

 Path
 sequence of alternating 

vertices and edges 

 begins with a vertex

 ends with a vertex

 each edge is preceded and 
followed by its endpoints

 Simple path
 path such that all its vertices 

and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2



© 2010 Goodrich, Tamassia Graphs 7

Terminology (cont.)
 Cycle

 circular sequence of alternating 
vertices and edges 

 each edge is preceded and 
followed by its endpoints

 Simple cycle

 cycle such that all its vertices 
and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a 
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2



© 2010 Goodrich, Tamassia Graphs 8

Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is 
counted twice

Property 2
In an undirected graph 

with no self-loops and 
no multiple edges

m  n (n - 1)/2

Proof: each vertex has 
degree at most (n - 1)

What is the bound for a 
directed graph?

Example

 n = 4

 m = 6

 deg(v) = 3



© 2010 Goodrich, Tamassia Graphs 9

Main Methods of the Graph ADT

 Vertices and edges

 are positions

 store elements

 Accessor methods

 endVertices(e): an array of 
the two endvertices of e

 opposite(v, e): the vertex 
opposite of v on e

 areAdjacent(v, w): true iff v 
and w are adjacent

 replace(v, x): replace 
element at vertex v with x

 replace(e, x): replace 
element at edge e with x

 Update methods
 insertVertex(o): insert a 

vertex storing element o

 insertEdge(v, w, o): insert 
an edge (v,w) storing 
element o

 removeVertex(v): remove 
vertex v (and its incident 
edges)

 removeEdge(e): remove 
edge e

 Iterable collection methods
 incidentEdges(v): edges 

incident to v

 vertices(): all vertices in the 
graph

 edges(): all edges in the 
graph



© 2010 Goodrich, Tamassia Graphs 10

Edge List Structure
 Vertex object

 element

 reference to position in 
vertex sequence

 Edge object
 element

 origin vertex object

 destination vertex object

 reference to position in 
edge sequence

 Vertex sequence
 sequence of vertex 

objects

 Edge sequence
 sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d



© 2010 Goodrich, Tamassia Graphs 11

Adjacency List Structure
 Edge list structure

 Incidence sequence 
for each vertex
 sequence of 

references to edge 
objects of incident 
edges

 Augmented edge 
objects
 references to 

associated 
positions in 
incidence 
sequences of end 
vertices

u

v

w

a b

a

u v w

b



© 2010 Goodrich, Tamassia Graphs 12

Adjacency Matrix Structure
 Edge list structure

 Augmented vertex 
objects
 Integer key (index) 

associated with vertex

 2D-array adjacency 
array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent vertices

 The “old fashioned” 
version just has 0 for 
no edge and 1 for edge

u

v

w

a b

0 1 2

0  

1 

2  a

u v w0 1 2

b



© 2010 Goodrich, Tamassia Graphs 13

Performance
 n vertices, m edges

 no parallel edges

 no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1


