
University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

CSCC43H: Introduction to
Databases

Lecture 4

Wael Aboulsaadat

Acknowledgment: these slides are partially based on Prof. Garcia-Molina & Prof. Ullman
slides accompanying the course’s textbook.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Database Management System (DBMS)

 A collection of programs that enable:
Defining (describing the structure),
̶ Populating by data (Constructing),
̶ Manipulating (querying, updating),
̶ Preserving consistency,
̶ Protecting from misuse,
̶ Recovering from failure, and
̶ Concurrent using
of a database.

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Banking Example

University of Toronto Scarborough

CSCC43: Introduction to Databases

E-R Diagram for the Banking Enterprise

University of Toronto Scarborough

CSCC43: Introduction to Databases

Banking Example
branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example Queries
 Find all loans of over $1200

 Find the loan number for each loan of an amount greater
than $1200

σamount > 1200 (loan)

∏loan_number (σamount > 1200 (loan))

 Find the names of all customers who have a loan, an
account, or both, from the bank

∏customer_name (borrower) ∪ ∏customer_name (depositor)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example Queries
 Find the names of all customers who have a

loan at the Perryridge branch.

 Find the names of all customers who have a loan at the
Perryridge branch but did not deposit at any branch of the
bank.

∏customer_name (σbranch_name = “Perryridge”

(σborrower.loan_number = loan.loan_number(borrower x loan))) –

∏customer_name(depositor)

∏customer_name (σbranch_name=“Perryridge”

(σborrower.loan_number = loan.loan_number(borrower x loan)))

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example Queries
 Find the names of all customers who have a

loan at the Perryridge branch.

 Query 2

∏customer_name(σloan.loan_number = borrower.loan_number (
(σbranch_name = “Perryridge” (loan)) x borrower))

 Query 1

∏customer_name (σbranch_name = “Perryridge” (

σborrower.loan_number = loan.loan_number (borrower x loan)))

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example Queries
 Find the largest account balance

̶ Strategy:
• Find those balances that are not the largest

 Rename account relation as d so that we can
compare each account balance with all others

• Use set difference to find those account balances that
were not found in the earlier step.

̶ The query is:

∏balance(account) - ∏account.balance

(σaccount.balance < d.balance (account x ρd (account)))

University of Toronto Scarborough

CSCC43: Introduction to Databases

Bank Example Queries
 Find the names of all customers who have a loan and an

account at bank.
∏customer_name (borrower) ∩ ∏customer_name (depositor)

 Find the name of all customers who have a loan at the
bank and the loan amount

∏customer_name, loan_number, amount (borrower loan)

University of Toronto Scarborough

CSCC43: Introduction to Databases

 Find all customers who have an account at all
branches located in Brooklyn city.

Bank Example Queries

University of Toronto Scarborough

CSCC43: Introduction to Databases

 Find all customers who have an account at all
branches located in Brooklyn city.

Bank Example Queries

∏customer_name, branch_name (depositor account)

÷ ∏branch_name (σbranch_city = “Brooklyn” (branch))

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example 2
Given relational schema:

Sailors (sid, sname, rating, age)
Reservation (sid, bid, date)
Boats (bid, bname, color)

1) Find names of sailors who’ve reserved boat #103
2) Find names of sailors who’ve reserved a red boat
3) Find sailors who’ve reserved a red or a green boat
4) Find sailors who’ve reserved a red and a green boat
5) Find the names of sailors who’ve reserved all boats

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Structured Query Language (SQL)

University of Toronto Scarborough

CSCC43: Introduction to Databases

CMSC424, Spring 2005

Structure Query Language

Data Definition
Language (DDL)

Data Manipulation
Language (DML)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Data Definition Language (DDL)

 The schema for each relation.
 The domain of values associated with each attribute.
 Integrity constraints (what’s valid….)
 The set of indices (keys..) to be maintained for each

relations.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but
also information about each relation, including:

University of Toronto Scarborough

CSCC43: Introduction to Databases

Domains
 Domains specify allowable values for attributes.
 Two categories:

̶ Elementary (predefined by the standard);
̶ User-defined.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Elementary Domains — Character
 Character

̶ Single characters or strings;
̶ Strings may be of variable length;
̶ A Character set different from the default one can be

used (e.g., Latin, Greek, Cyrillic, etc.)
̶ Syntax:

character [varying] [(Length)]
[character set CharSetName]

̶ It is possible to use char and varchar, for
character and character varying respectively

University of Toronto Scarborough

CSCC43: Introduction to Databases

More Elementary Domains
 Bit

̶ Single Boolean values or strings of Boolean values (may
be variable in length);

̶ Syntax:
bit [varying] [(Length)]

 Exact numeric domains
̶ Exact values, integer or with a fractional part
̶ Four alternatives: numeric(6,3)

numeric [(Precision [, Scale])]
decimal [(Precision [, Scale])]
integer
smallint # of significant digits decimal digits

University of Toronto Scarborough

CSCC43: Introduction to Databases

Approximate Numeric Domains
 Approximate numeric domains

̶ Approximate real values
̶ Based on a floating point representation

float [(Precision)]
double precision

University of Toronto Scarborough

CSCC43: Introduction to Databases

Temporal Instant Domains
 Temporal instants

date has fields year,month,day

time [(Precision)] [with time zone]
has fields hour,minute,second

timestamp [(Precision)] [with time zone]

 Temporal intervals
interval FirstUnitOfTime [to LastUnitOfTime]
̶ Units of time are divided into two groups:

• (i) year, month,
• (ii) day, hour, minute, second

̶ For example, year(5) to month allows intervals up to
99999yrs + 11mo

University of Toronto Scarborough

CSCC43: Introduction to Databases

User-Defined Domains
 Comparable to definitions of variable types in

programming languages.
 A domain is characterized by name, elementary

domain, default value, set of constraints
 Syntax:
create domain DomainName
as ElementaryDomain [DefaultValue] [
Constraints]

 Example:
create domain Mark as smallint default null

University of Toronto Scarborough

CSCC43: Introduction to Databases

Default Domain Values
 Define the value that the attribute must assume

when a value is not specified during row
insertion.

 Syntax:
default < GenericValue | user | null >

 GenericValue represents a value compatible
with the domain, in the form of a constant or an
expression.

 user is the login name of the user who assigns
a value to this attribute.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Summary: domain types in SQL
 char(n). Fixed length character string, with user-specified length n.
 varchar(n). Variable length character strings, with user-specified

maximum length n.
 int. Integer (a finite subset of the integers that is machine-

dependent).
 smallint. Small integer (a machine-dependent subset of the integer

domain type).
 numeric(p,d). Fixed point number, with user-specified precision of

p digits, with n digits to the right of decimal point.
 real, double precision. Floating point and double-precision

floating point numbers, with machine-dependent precision.
 float(n). Floating point number, with user-specified precision of at

least n digits.
 Null values are allowed in all the domain types. Declaring an

attribute to be not null prohibits null values for that attribute.
 create domain construct in SQL-92 creates user-defined domain

types create domain person-name char(20) not null

University of Toronto Scarborough

CSCC43: Introduction to Databases

Summary: domain types in SQL (cont.)
 date. Dates, containing a (4 digit) year, month and date

̶ E.g. date ‘2001-7-27’
 time. Time of day, in hours, minutes and seconds.

̶ E.g. time ’09:00:30’ time ’09:00:30.75’
 timestamp: date plus time of day

̶ E.g. timestamp ‘2001-7-27 09:00:30.75’
 Interval: period of time

̶ E.g. Interval ‘1’ day
̶ Subtracting a date/time/timestamp value from another gives an interval

value
̶ Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp
̶ E.g. extract (year from r.starttime)

 Can cast string types to date/time/timestamp
̶ E.g. cast <string-valued-expression> as date

University of Toronto Scarborough

CSCC43: Introduction to Databases

Schema Definition
 A schema is a collection of objects: domains,

tables, indexes, assertions, views, privileges
 A schema has a name and an owner (who

determines authorization privileges)
 Syntax:

create schema [SchemaName]
[[authorization] Authorization]
{ SchemaElementDefinition }

University of Toronto Scarborough

CSCC43: Introduction to Databases

Table Definition
 An SQL table consists of an ordered set of

attributes, and a (possibly empty) set of constraints
 Statement create table defines a relation

schema, creating an empty instance.
 Syntax:

create table TableName
(AttributeName Domain [DefaultValue] [Constraints]
{, AttributeName Domain [DefaultValue] [Constraints] }
[OtherConstraints])

University of Toronto Scarborough

CSCC43: Introduction to Databases

Create Table Construct
 An SQL relation is defined using the create table

command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

̶ r is the name of the relation
̶ each Ai is an attribute name in the schema of relation r
̶ Di is the data type of values in the domain of attribute Ai

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example of create table
Employee:

RegNo is 6 characters
FirstName is 20 characters
Surname is 20 characters
Salary is 9 numeric
City is 15 characters

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example of create table
create table Employee
(

RegNo character(6),
FirstName character(20),
Surname character(20),
Salary numeric(9),
City character(15)

)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Intra-Relational Constraints
 Constraints are conditions that must be verified by

every database instance
 Intra-relational constraints involve a single relation

̶ not null (on single attributes)
̶ unique: permits the definition of keys; syntax:

• for single attributes: unique, after the domain
• for multiple: unique (Attribute {, Attribute })

̶ primary key: defines the primary key (once for each
table; implies not null); syntax like unique

̶ check: described later

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example of Intra-Relational Constraints

 Each pair of FirstName and Surname uniquely
identifies each element

FirstName char(20) not null,
Surname char(20) not null,
unique(FirstName,Surname)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Inter-Relational Constraints
Constraints may involve several relations:
 check: checks whether an assertion is true;
 references and foreign key permit the

definition of referential integrity constraints;
̶ Syntax for single attributes

references after the domain
̶ Syntax for multiple attributes

foreign key (Attribute {, Attribute })
references ...

 It is possible to associate reaction policies to
violations of referential integrity constraints.

University of Toronto Scarborough

CSCC43: Introduction to Databases

create table Employee
(

RegNo char(6),
FirstName char(20) not null,
Surname char(20) not null,
Dept char(15),
Salary numeric(9) default 0,
City char(15),
primary key(RegNo),
foreign key(Dept) references Department(DeptName),
unique(FirstName,Surname)

)

Example

	CSCC43H: Introduction to Databases��Lecture 4
	Database Management System (DBMS)
	Banking Example
	E-R Diagram for the Banking Enterprise
	Banking Example
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Bank Example Queries
	Bank Example Queries
	Bank Example Queries
	Example 2
	Structured Query Language (SQL)
	Structure Query Language
	Data Definition Language (DDL)
	Domains
	Elementary Domains — Character
	More Elementary Domains
	Approximate Numeric Domains
	Temporal Instant Domains
	User-Defined Domains
	Default Domain Values
	Summary: domain types in SQL
	Summary: domain types in SQL (cont.)
	Schema Definition
	Table Definition
	Create Table Construct
	Example of create table
	Example of create table
	Intra-Relational Constraints
	Example of Intra-Relational Constraints
	Inter-Relational Constraints
	Example

