
University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

CSCC43H: Introduction to
Databases

Lecture 9

Wael Aboulsaadat

Acknowledgment: these slides are partially based on Prof. Garcia-Molina & Prof. Ullman
slides accompanying the course’s textbook.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Database Management System (DBMS)

 A collection of programs that enable:
Defining (describing the structure),
Populating by data (Constructing),
Manipulating (querying, updating),
 Preserving consistency,
̶ Protecting from misuse,
̶ Recovering from failure, and
̶ Concurrent using
of a database.

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Normalization Example 2:
salesperson and customer

University of Toronto Scarborough

CSCC43: Introduction to Databases

Salesperson and Customer

 Unnormalized Relation
Sales Report (Salesperson-No, Salesperson-Name, Sales-Area, {Customer-No,

Customer-Name, Warehouse-No, Warehouse-Location, Sales-Amount})

{} -- repeating group

 1NF -- removes repeating groups
Salesperson (Salesperson-No, Salesperson-Name, Sales-Area)

Salesperson-Customer (Salesperson-No, Customer-No, Customer-Name,

Warehouse-No, Warehouse-Location, Sales-Amount)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Salesperson and Customer

 1NF
Salesperson (Salesperson-No, Salesperson-Name, Sales-Area)

Salesperson-Customer (Salesperson-No, Customer-No, Customer-Name,
Warehouse-No, Warehouse-Location, Sales-Amount)

 2NF -- removes non-full dependencies on primary
key
Salesperson (Salesperson-No, Salesperson-Name, Sales-Area)

Sales (Salesperson-No, Customer-No, Sales-Amount)

Customer-Warehouse (Customer-No, Customer-Name, Warehouse-No,
Warehouse-Location)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Salesperson and Customer

 2NF
Salesperson (Salesperson-No, Salesperson-Name, Sales-Area)

Sales (Salesperson-No, Customer-No, Sales-Amount)

Customer-Warehouse (Customer-No, Customer-Name, Warehouse-No,
Warehouse-Location)

 3NF -- removes transitive dependencies
Salesperson (Salesperson-No, Salesperson-Name, Sales-Area)

Sales (Salesperson-No, Customer-No, Sales-Amount)

Customer-Warehouse (Customer-No, Customer-Name, Warehouse-No)

Warehouse (Warehouse-No, Warehouse-Location)

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Normalization Example 3:
salesperson and products

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

CSCC43: Introduction to Databases

First Normal Form

University of Toronto Scarborough

CSCC43: Introduction to Databases

Second Normal Form

University of Toronto Scarborough

CSCC43: Introduction to Databases

Third Normal Form

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Normalization Example 4:
patient and subscription

University of Toronto Scarborough

CSCC43: Introduction to Databases

Wellmeadows Hospital
Patient Medication Form

Patient Number: ______________ Patient Name: ______________

Full Name: ___________________
Bed Number: _______

Ward Number:________________
Ward Name: _______

Drug
Number

Name Description Dosage Method of
Admin

Units per
Day

Start Date Finish
Date

10223
10334
10223

Morphine
Tetracyclene
Morphine

Pain Killer
Antibiotic
Pain Killer

10 mg/ml
0.5 mg/ml
10 mg/ml

Oral
IV

Oral

50
10
10

03/24/04
03/24/04
04/25/04

04/24/04
04/17/04
05/24/04

Functional Dependencies:
Patient No → Full Name
Ward No → Ward Name
Drug No → Name, Description, Dosage, Method of Admin
Patient No, Drug No, Start Date → Units per Day, Finish date

University of Toronto Scarborough

CSCC43: Introduction to Databases

 First Normal Form
Patient No, Drug No, Start Date, Full Name, Ward No, Ward Name,
Bed No, Name, Description, Dosage, Method of Admin, Units per
Day, Finish Date

 Second Normal Form
Patient No, Drug No, Start Date, Ward No, Ward Name, Bed No,
Units per Day, Finish Date
Drug No, Name, Description, Dosage, Method of Admin
Patient No, Full Name

 Third Normal Form/BCNF
Patient No, Drug No, Start Date, Ward No, Bed No, Units per Day,
Finish Date
Drug No, Name, Description, Dosage, Method of Admin
Patient No, Full Name
Ward No, Ward Name

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Normalization Example 5:
car-owner and car

University of Toronto Scarborough

CSCC43: Introduction to Databases

Car-owner and car
 Unnormalized Relation

Owner-Car (Owner-ID, Owner-Name, Address, {Registration-No, Model,

Manufacturer, No-Cylinders, Dealer, Dealer-Address, Sales-Amount})

{} -- repeating group

 1NF -- removes repeating groups
Owner (Owner-ID, Owner-Name, Address)

Owner-Registration (Owner-ID, Registration-No, Model, Manufacturer, No-

Cylinders, Dealer, Dealer-Address, Sales-Amount)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Car-owner and car

 1NF
Owner (Owner-ID, Owner-Name, Address)

Owner-Registration (Owner-ID, Registration-No, Model, Manufacturer, No-
Cylinders, Dealer, Dealer-Address, Sales-Amount)

 2NF -- removes non-full dependencies on primary key
Owner (Owner-ID, Owner-Name, Address)

Owner-Registration (Owner-ID, Registration-No)

Registration (Registration-No, Model, Manufacturer, No-Cylinders, Dealer, Dealer-
Address, Sales-Amount)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Car-owner and car

 2NF
Owner (Owner-ID, Owner-Name, Address)

Owner-Registration (Owner-ID, Registration-No)

Registration (Registration-No, Model, Manufacturer, No-Cylinders, Dealer,
Dealer-Address, Sales-Amount)

 3NF -- removes transitive dependencies
Owner (Owner-ID, Owner-Name, Address)

Owner-Registration (Owner-ID, Registration-No)

Registration (Registration-No, Model, Manufacturer, No-Cylinders,
Dealer, Sales-Amount)

Dealer (Dealer, Dealer-Address)

University of Toronto Scarborough

CSCC43: Introduction to Databases

Intuitive Normalization

1NF Tables represent entities
2NF Each table represents only one entity
3NF Tables do not contain attributes from

embedded entities

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

JDBC

University of Toronto Scarborough

CSCC43: Introduction to Databases

Programs with Embedded SQL

Host language + Embedded SQL

Preprocessor

Host Language + function calls

Host language compiler

Host language program

Preprocessor

Host language compiler

Call-level
interface (CLI):
ODBC,JDBC,

ADO

University of Toronto Scarborough

CSCC43: Introduction to Databases

JDBC
 Call-level interface (CLI) for executing SQL from a

Java program
 SQL statement is constructed at run time as the

value of a Java variable (as in dynamic SQL)
 JDBC passes SQL statements to the underlying

DBMS. Can be interfaced to any DBMS that has
a JDBC driver

 Part of SQL:2003

University of Toronto Scarborough

CSCC43: Introduction to Databases

JDBC Run-Time Architecture

DBMS

application driver
manager

DB/2
driver

SQLServer
driver

Oracle
driver

DB/2
database

SQLServer
database

Oracle
database

University of Toronto Scarborough

CSCC43: Introduction to Databases

Steps to execute queries using JDBC

1. Register Oracle Driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver())

2. Establish connection to DB server
Connection con =
DriverManager.getConnection(<url>,<username>,<password>);
<url> identifies which Oracle Driver to use, connect to which
database, on which port and what is the service name.

3. Create Statement
Statement sta = con.createStatement();

University of Toronto Scarborough

CSCC43: Introduction to Databases

Steps to execute queries using JDBC (contd..)

4. Execute Query
ResultSet query = sta.executeQuery(<Query>);

5. Display/Process Result
while(query.next()) {
//process data from tuples.
}

6. Close connection
query.close();
sta.close();
con.close();

University of Toronto Scarborough

CSCC43: Introduction to Databases

Executing a Query
import java.sql.*; -- import all classes in package java.sql

Class.forName (driver name); // static method of class Class
// loads specified driver

Connection con = DriverManager.getConnection(Url, Id, Passwd);
• Static method of class DriverManager; attempts to

connect to DBMS
• If successful, creates a connection object, con, for

managing the connection

Statement stat = con.createStatement ();
• Creates a statement object stat
• Statements have executeQuery() method

University of Toronto Scarborough

CSCC43: Introduction to Databases

Executing a Query (cont’d)
String query = “SELECT T.StudId FROM Transcript T” +

“WHERE T.CrsCode = ‘cse305’ ” +
“AND T.Semester = ‘S2000’ ”;

ResultSet res = stat.executeQuery (query);
• Creates a result set object, res.
• Prepares and executes the query.
• Stores the result set produced by execution in res

(analogous to opening a cursor).
• The query string can be constructed at run time (as above).
• The input parameters are plugged into the query when

the string is formed (as above)

University of Toronto Scarborough

CSCC43: Introduction to Databases

String query = “SELECT T.StudId FROM Transcript T” +
“WHERE T.CrsCode = ? AND T.Semester = ?”;

PreparedStatement ps = con.prepareStatement (query);
• Prepares the statement
• Creates a prepared statement object, ps, containing the

prepared statement
• Placeholders (?) mark positions of in parameters;

special API is provided to plug the actual values in
positions indicated by the ?’s

Preparing and Executing a Query

placeholders

University of Toronto Scarborough

CSCC43: Introduction to Databases

Preparing and Executing a Query (cont’d)
String crs_code, semester;
………
ps.setString(1, crs_code); // set value of first in parameter
ps.setString(2, semester); // set value of second in parameter

ResultSet res = ps.executeQuery ();
• Creates a result set object, res
• Executes the query
• Stores the result set produced by execution in res

while (res.next ()) { // advance the cursor
j = res.getInt (“StudId”); // fetch output int-value
…process output value…

}

University of Toronto Scarborough

CSCC43: Introduction to Databases

Result Sets and Cursors
 Three types of result sets in JDBC:
̶ Forward-only: not scrollable
̶ Scroll-insensitive: scrollable; changes

made to underlying tables after the
creation of the result set are not visible
through that result set
̶ Scroll-sensitive: scrollable; updates and

deletes made to tuples in the underlying
tables after the creation of the result set
are visible through the set

University of Toronto Scarborough

CSCC43: Introduction to Databases

Result Set

 Any result set type can be declared read-only or
updatable – CONCUR_UPDATABLE (assuming
SQL query satisfies the conditions for updatable
views)

 Updatable: Current row of an updatable result set
can be changed or deleted, or a new row can be
inserted. Any such change causes changes to
the underlying database table

Statement stat = con.createStatement (
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

res.updateString (“Name”, “John”); // change the attribute “Name” of
// current row in the row buffer.

res.updateRow (); // install changes to the current row buffer
// in the underlying database table

University of Toronto Scarborough

CSCC43: Introduction to Databases

Handling Exceptions

 try/catch is the basic structure within which
an SQL statement should be embedded

 If an exception is thrown, an exception
object, ex, is created and the catch clause
is executed

 The exception object has methods to print
an error message, return SQLSTATE, etc.

try {
...Java/JDBC code...

} catch (SQLException ex) {
…exception handling code...

}

University of Toronto Scarborough

CSCC43: Introduction to Databases

University of Toronto Scarborough

Transactions

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example: Bad Interaction

 You and your domestic partner each take $100
from different ATM’s at about the same time.
̶ The DBMS better make sure one account deduction

doesn’t get lost.

 Compare: An OS allows two people to edit a
document at the same time. If both write, one’s
changes get lost!

University of Toronto Scarborough

CSCC43: Introduction to Databases

An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe’s Bar sells only
Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and
lowest price Joe charges.

 Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Sally’s Program

 Sally executes the following two SQL
statements, which we call (min) and (max), to
help remember what they do.

(max)SELECT MAX(price) FROM Sells
WHERE bar = ’Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells
WHERE bar = ’Joe’’s Bar’;

University of Toronto Scarborough

CSCC43: Introduction to Databases

Joe’s Program

 At about the same time, Joe executes the
following steps, which have the mnemonic names
(del) and (ins).

(del) DELETE FROM Sells
WHERE bar = ’Joe’’s Bar’;

(ins) INSERT INTO Sells
VALUES(’Joe’’s Bar’, ’Heineken’, 3.50);

University of Toronto Scarborough

CSCC43: Introduction to Databases

Interleaving of Statements

 Although (max) must come before (min), and
(del) must come before (ins), there are no other
constraints on the order of these statements,
unless we group Sally’s and/or Joe’s statements
into transactions.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example: Strange Interleaving

 Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe’s Prices:
Statement:
Result:

 Sally sees MAX < MIN!

2.50, 3.00

(del) (ins)

3.50

(min)

3.50

2.50, 3.00

(max)

3.00

University of Toronto Scarborough

CSCC43: Introduction to Databases

Transaction Concept
 A transaction is a unit of program execution that

accesses and possibly updates various data items
 A transaction must see a consistent database
 During transaction execution the database may be

inconsistent
 When the transaction is committed, the database

must be consistent
 Two main issues to deal with:

̶ Failures of various kinds, such as hardware failures and
system crashes

̶ Concurrent execution of multiple transactions

University of Toronto Scarborough

CSCC43: Introduction to Databases

ACID Properties
 To preserve integrity of data,

 Atomicity
̶ Either all operations of the transaction are properly reflected in the database or

none are.

 Consistency
̶ Execution of a transaction in isolation preserves the consistency of the database.

 Isolation
̶ Although multiple transactions may execute concurrently, each transaction must

be unaware of other concurrently executing transactions.
̶ Intermediate transaction results must be hidden from other concurrently

executed transactions.
̶ That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj,

finished execution before Ti started, or Tj started execution after Ti finished.

 Durability
̶ After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example of Fund Transfer
 Transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

 Consistency requirement
̶ the sum of A and B is unchanged by the execution of the

transaction.

 Atomicity requirement
̶ if the transaction fails after step 3 and before step 6, the system

should ensure that its updates are not reflected in the database, else
an inconsistency will result.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example of Fund Transfer (Cont.)
 Durability requirement

̶ once the user has been notified that the transaction has
completed (i.e., the transfer of the $50 has taken place), the
updates to the database by the transaction must persist despite
failures.

 Isolation requirement
̶ if between steps 3 and 6, another transaction is allowed to

access the partially updated database, it will see an inconsistent
database (the sum A + B will be less than it should be).

̶ Can be ensured trivially by running transactions serially, that is
one after the other. However, executing multiple transactions
concurrently has significant benefits, as we will see.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Transaction State
 Active

̶ the initial state; the transaction
stays in this state while it is executing

 Partially committed
̶ after the final statement has been executed.

 Failed
̶ after the discovery that normal execution

can no longer proceed.

 Aborted
̶ after the transaction has been rolled back and the database restored to its

state prior to the start of the transaction.
̶ Two options after it has been aborted:

• restart the transaction – only if no internal logical error
• kill the transaction

 Committed: after successful completion.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Implementation of Atomicity and Durability
 The recovery-management component of a database system

implements the support for atomicity and durability.

 Recovery Schemes: Log-based approach vs Shadowing
approach

 The shadow-database scheme:
̶ assume that only one transaction is active at a time.
̶ a pointer called db_pointer always points to the current consistent copy

of the database.
̶ all updates are made on a shadow copy of the database, and

db_pointer is made to point to the updated shadow copy only after the
transaction reaches partial commit and all updated pages have been
flushed to disk.

̶ in case transaction fails, old consistent copy pointed to by db_pointer
can be used, and the shadow copy can be deleted.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Implementation of Atomicity and Durability (Cont.)

 The shadow-database scheme:
̶ Assumes disks to not fail
̶ Simple & Useful for text editors, but extremely

inefficient for large databases: executing a single
transaction requires copying the entire database.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Concurrent Executions
 Multiple transactions are allowed to run concurrently in the system.

 Advantages are:
̶ increased processor and disk utilization, leading to better

transaction throughput:
• one transaction can be using the CPU while another is

reading from or writing to the disk
̶ reduced average response time for transactions:

• short transactions need not wait behind long ones.

 Concurrency control schemes
̶ mechanisms to achieve isolation, i.e., to control the interaction

among the concurrent transactions in order to prevent them from
destroying the consistency of the database

University of Toronto Scarborough

CSCC43: Introduction to Databases

Schedules
 Schedules

̶ sequences that indicate the chronological order in
which instructions of concurrent transactions are
executed

̶ a schedule for a set of transactions must consist of all
instructions of those transactions

̶ must preserve the order in which the instructions
appear in each individual transaction.

 Serial Schedule
̶ instruction sequences from one by one transactions

University of Toronto Scarborough

CSCC43: Introduction to Databases

Example Schedule: Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance
from A to B.

 The following is a serial schedule in which T1 is followed by T2.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Schedule 2 -- Another Serial Schedule

 The following is a serial schedule in which T2 is followed by T1.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Read-Only vs. Read-Write Transactions

 We can tell the DBMS that we won’t be
performing any updates:

 If we are going to modify the DBMS, we need:

SET TRANSACTION READ ONLY;
SELECT * FROM Accounts
WHERE account#=‘1234’;

SET TRANSACTION READ WRITE;
UPDATE Accounts
SET balance = balance - $100
WHERE account#= ‘1234’; ...

University of Toronto Scarborough

CSCC43: Introduction to Databases

Isolation

 General rules of thumb w.r.t. isolation:
̶ Fully serializable isolation is expensive

• We can’t do as many things concurrently (or we
have to undo them frequently)

̶ For performance, the DBMS lets you relax the
isolation level if your application can tolerate it, e.g:

SET TRANSACTION READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;

University of Toronto Scarborough

CSCC43: Introduction to Databases

Fixing Sally’s Problem by Using Transactions
 If we group Sally’s statements (max)(min) into

one transaction, then she cannot see this
inconsistency.

 She sees Joe’s prices at some fixed time.
̶ Either before or after he changes prices, or in the

middle, but the MAX and MIN are computed from the
same prices.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Another Problem: Rollback

 Suppose Joe executes (del)(ins), not as a
transaction, but after executing these
statements, thinks better of it and issues a
ROLLBACK statement.

 If Sally executes her statements after (ins) but
before the rollback, she sees a value, 3.50,
that never existed in the database.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Solution

 If Joe executes (del)(ins) as a transaction, its
effect cannot be seen by others until the
transaction executes COMMIT.
̶ If the transaction executes ROLLBACK instead, then

its effects can never be seen.

University of Toronto Scarborough

CSCC43: Introduction to Databases

Transactions in JDBC
 Default for a connection is

̶ Transaction boundaries
• Autocommit mode: each SQL statement is a transaction
• To group several statements into a transaction use

con.setAutoCommit (false)
̶ Isolation

• default isolation level of the underlying DBMS
• To change isolation level use

con.setTransactionIsolationLevel
(TRANSACTION_SERIALIZABLE)

 With autocommit off:
̶ transaction is committed using con.commit().
̶ next transaction is automatically initiated (chaining)

 Transactions on each connection committed separate

University of Toronto Scarborough

CSCC43: Introduction to Databases

Transactions in JDBC - example
con.setAutoCommit(false);
PreparedStatement updateSales =

con.prepareStatement("UPDATE COFFEES SET SALES = ?
WHERE COF_NAME LIKE ?");

updateSales.setInt(1, 50);
updateSales.setString(2, "Colombian");
updateSales.executeUpdate();
PreparedStatement updateTotal =

con.prepareStatement("UPDATE COFFEES SET TOTAL =
TOTAL + ? WHERE COF_NAME LIKE ?");

updateTotal.setInt(1, 50);
updateTotal.setString(2, "Colombian");
updateTotal.executeUpdate();
con.commit();
con.setAutoCommit(true);

	CSCC43H: Introduction to Databases��Lecture 9
	Database Management System (DBMS)
	Normalization Example 2:�salesperson and customer�
	Salesperson and Customer
	Salesperson and Customer
	Salesperson and Customer
	Normalization Example 3: �salesperson and products
	Slide Number 8
	First Normal Form
	Second Normal Form
	Third Normal Form
	Normalization Example 4:�patient and subscription�
	Slide Number 13
	Slide Number 14
	Normalization Example 5:�car-owner and car�
	Car-owner and car
	Car-owner and car
	Car-owner and car
	Intuitive Normalization
	JDBC
	Programs with Embedded SQL
	JDBC
	JDBC Run-Time Architecture
	Steps to execute queries using JDBC
	Steps to execute queries using JDBC (contd..)
	Executing a Query
	Executing a Query (cont’d)
	Preparing and Executing a Query
	Preparing and Executing a Query (cont’d)
	Result Sets and Cursors
	Result Set
	Handling Exceptions
	Transactions
	Example: Bad Interaction
	An Example: Interacting Processes
	Sally’s Program
	Joe’s Program
	Interleaving of Statements
	Example: Strange Interleaving
	Transaction Concept
	ACID Properties
	Example of Fund Transfer
	Example of Fund Transfer (Cont.)
	Transaction State
	Implementation of Atomicity and Durability
	Implementation of Atomicity and Durability (Cont.)
	Concurrent Executions
	Schedules
	Example Schedule: Schedule 1
	Schedule 2 -- Another Serial Schedule
	Read-Only vs. Read-Write Transactions
	Isolation
	Fixing Sally’s Problem by Using Transactions
	Another Problem: Rollback
	Solution
	Transactions in JDBC
	Transactions in JDBC - example

