
Priority Queues 1

Priority Queues

© 2010 Goodrich, Tamassia

Priority Queues 2

Priority Queue ADT

 A priority queue stores a
collection of entries

 Each entry is a pair
(key, value)

 Main methods of the Priority
Queue ADT

 insert(k, x)
inserts an entry with key k
and value x

 removeMin()
removes and returns the
entry with smallest key

 Additional methods

 min()
returns, but does not
remove, an entry with
smallest key

 size(), isEmpty()

 Applications:

 Standby flyers

 Auctions

 Stock market

© 2010 Goodrich, Tamassia

Priority Queues 3

Total Order Relations

 Keys in a priority
queue can be
arbitrary objects
on which an order
is defined

 Two distinct
entries in a
priority queue can
have the same
key

 Mathematical concept
of total order relation 

 Reflexive property:
x  x

 Antisymmetric property:
x  y  y  x  x = y

 Transitive property:
x  y  y  z  x  z

© 2010 Goodrich, Tamassia

Priority Queues 4

Entry ADT

 An entry in a priority
queue is simply a key-
value pair

 Priority queues store
entries to allow for
efficient insertion and
removal based on keys

 Methods:

 getKey: returns the key
for this entry

 getValue: returns the
value associated with this
entry

 As a Java interface:

/**

* Interface for a key-value

* pair entry

**/

public interface Entry<K,V>
{

public K getKey();

public V getValue();

}

© 2010 Goodrich, Tamassia

Priority Queues 5

Comparator ADT

 A comparator encapsulates
the action of comparing two
objects according to a given
total order relation

 A generic priority queue
uses an auxiliary
comparator

 The comparator is external
to the keys being compared

 When the priority queue
needs to compare two keys,
it uses its comparator

 Primary method of the
Comparator ADT

 compare(x, y): returns an
integer i such that

 i < 0 if a < b,

 i = 0 if a = b

 i > 0 if a > b

 An error occurs if a and b
cannot be compared.

© 2010 Goodrich, Tamassia

Priority Queues 6

Example Comparator
 Lexicographic comparison of 2-D

points:

/** Comparator for 2D points under the
standard lexicographic order. */

public class Lexicographic implements
Comparator {

int xa, ya, xb, yb;
public int compare(Object a, Object b)
throws ClassCastException {
xa = ((Point2D) a).getX();
ya = ((Point2D) a).getY();
xb = ((Point2D) b).getX();
yb = ((Point2D) b).getY();
if (xa != xb)

return (xb - xa);
else

return (yb - ya);
}

}

 Point objects:

/** Class representing a point in the
plane with integer coordinates */

public class Point2D {
protected int xc, yc; // coordinates
public Point2D(int x, int y) {

xc = x;
yc = y;

}
public int getX() {

return xc;
}
public int getY() {

return yc;
}

}

© 2010 Goodrich, Tamassia

Priority Queues 7

Priority Queue Sorting

 We can use a priority
queue to sort a set of
comparable elements

1. Insert the elements one
by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

 The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)

Input sequence S, comparator C for

the elements of S

Output sequence S sorted in

increasing order according to C

P  priority queue with
comparator C

while S.isEmpty ()

e  S.removeFirst ()

P.insert (e, )

while P.isEmpty()

e  P.removeMin().getKey()

S.addLast(e)

© 2010 Goodrich, Tamassia

Priority Queues 8

Sequence-based Priority Queue

 Implementation with an
unsorted list

 Performance:
 insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

 removeMin and min take
O(n) time since we have

to traverse the entire
sequence to find the
smallest key

 Implementation with a
sorted list

 Performance:

 insert takes O(n) time

since we have to find the
place where to insert the
item

 removeMin and min take
O(1) time, since the

smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

© 2010 Goodrich, Tamassia

Priority Queues 9

Selection-Sort

 Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

 Running time of Selection-sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time

2. Removing the elements in sorted order from the priority
queue with n removeMin operations takes time

proportional to

1 + 2 + …+ n

 Selection-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 10

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 11

Insertion-Sort

 Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

 Running time of Insertion-sort:
1. Inserting the elements into the priority queue with n

insert operations takes time proportional to

1 + 2 + …+ n

2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

 Insertion-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 12

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 13

In-place Insertion-Sort
 Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place

 A portion of the input
sequence itself serves as
the priority queue

 For in-place insertion-sort

 We keep sorted the initial
portion of the sequence

 We can use swaps
instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

© 2010 Goodrich, Tamassia

