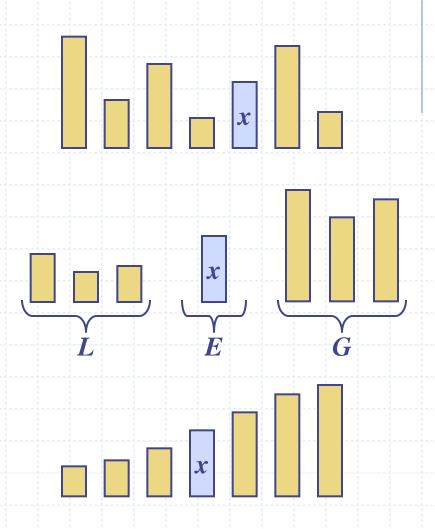


- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join L, E and G





- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- \bullet Thus, the partition step of quick-sort takes O(n) time

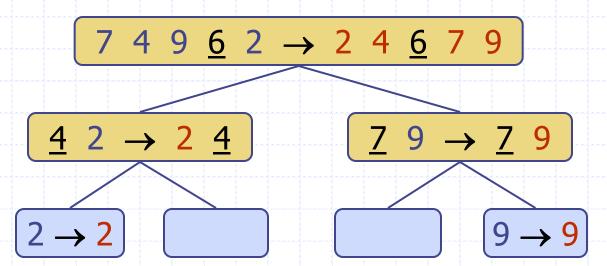
Algorithm *partition(S, p)*

Input sequence S, position p of pivotOutput subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

```
L, E, G \leftarrow \text{empty sequences}
x \leftarrow S.remove(p)
while \neg S.isEmpty()
y \leftarrow S.remove(S.first())
if y < x
L.addLast(y)
else if y = x
E.addLast(y)
else \{y > x\}
G.addLast(y)
return L, E, G
```

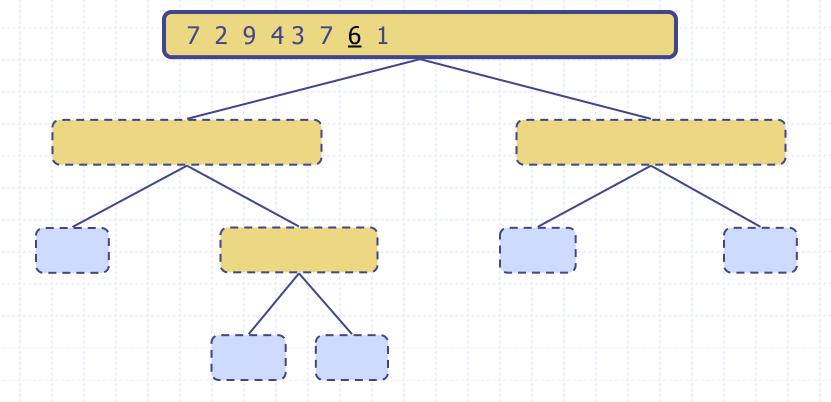
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1



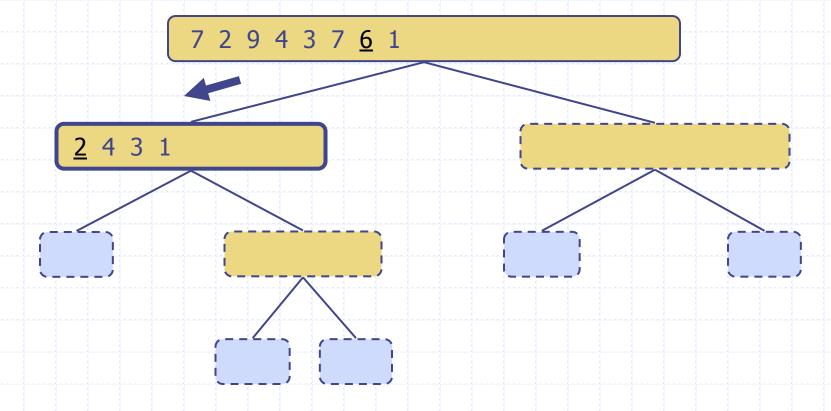
Execution Example

Pivot selection



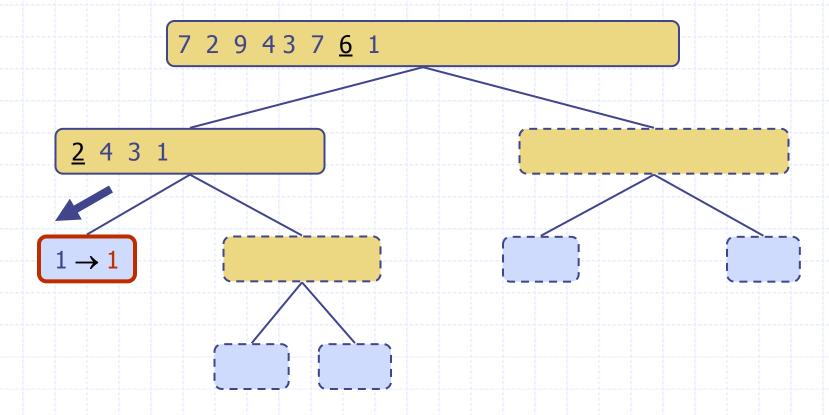
© 2004 Goodrich, Tamassia

Partition, recursive call, pivot selection



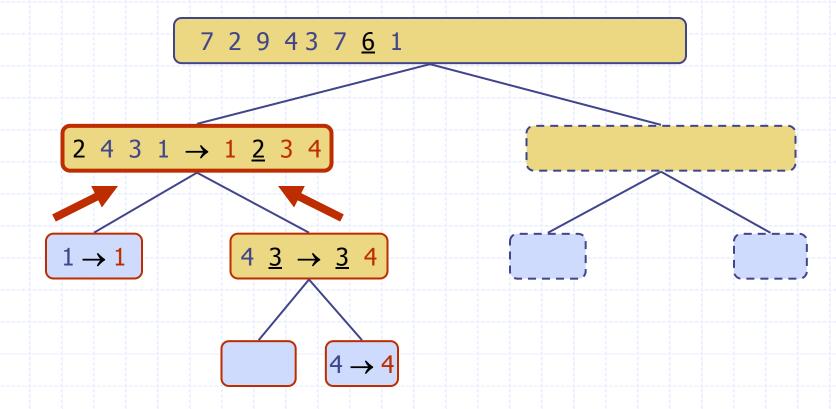
© 2004 Goodrich, Tamassia

Partition, recursive call, base case



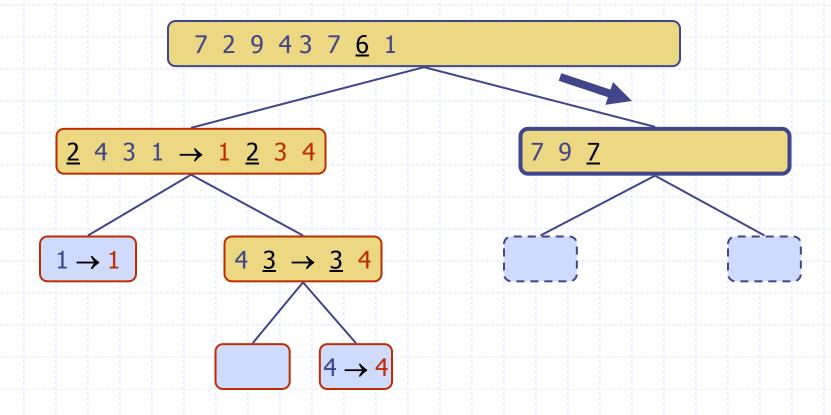
© 2004 Goodrich, Tamassia

Recursive call, ..., base case, join



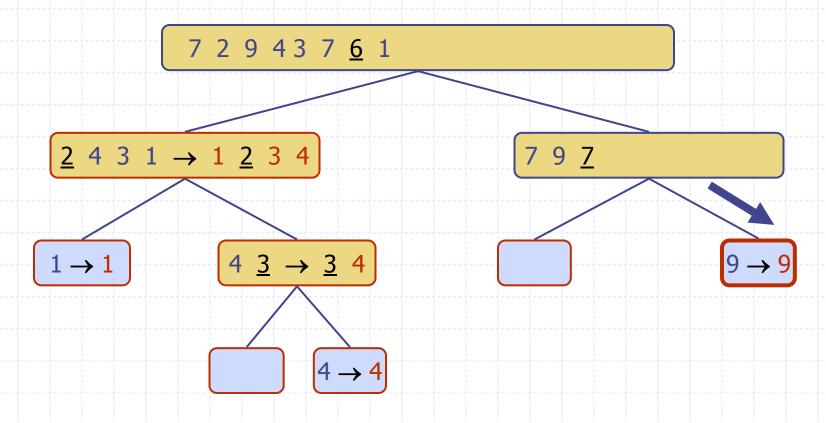
© 2004 Goodrich, Tamassia

Recursive call, pivot selection

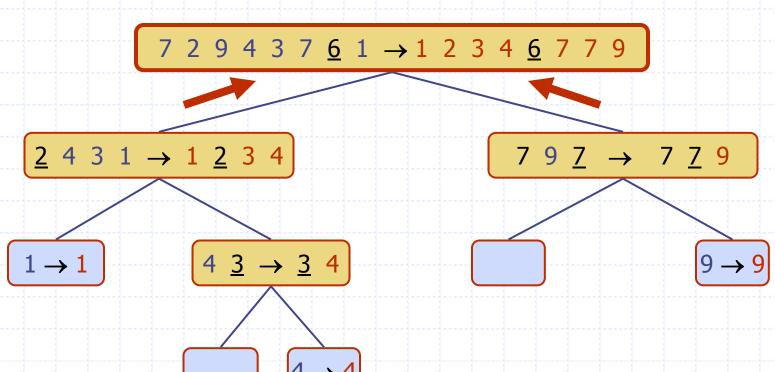


© 2004 Goodrich, Tamassia

Partition, ..., recursive call, base case



© 2004 Goodrich, Tamassia



© 2004 Goodrich, Tamassia

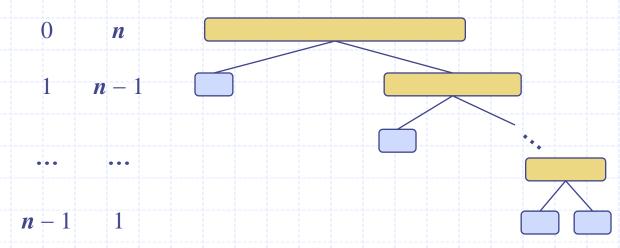
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \bullet One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

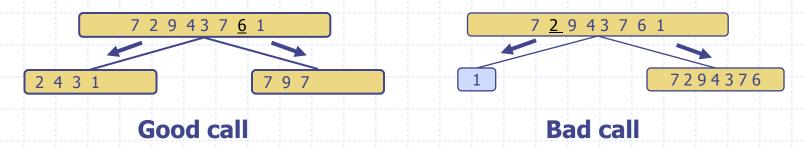
depth time



© 2004 Goodrich, Tamassia

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4



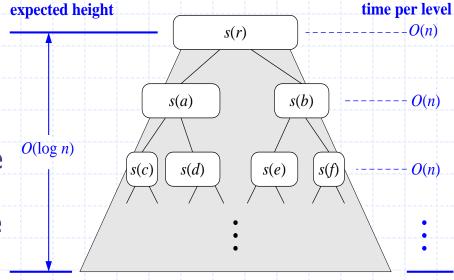
- ◆ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

13

© 2004 Goodrich, Tamassia Quick-Sort

Expected Running Time, Part 2

- lacktriangle Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \bullet For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$



total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and rOutput sequence S with the elements of rank between l and r rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

(pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element < x.
 - Swap elements at indices j and k



Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	$O(n \log n)$ expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)