N
N

Quick-Sort

| 74962524679 |

© 2004 Goodrich, Tamassia Quick-Sort

Quick-Sort

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

= Divide: pick a random
element x (called pivot) and
partition S into

» L elements less than x

+ E elements equal x

* G elements greater than x
m Recur:sort Land G

= Conquer: join L, E and G

N

© 2004 Goodrich, Tamassia Quick-Sort

=<

m=<

O<

Partition

We partition an input
sequence as follows:

= We remove, in turn, each
element y from S and

m WeinsertyintolL, EorgG,
depending on the result of
the comparison with the
pivot x

Each insertion and removal

N

]

L

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G <« empty sequences
X <~ S.remove(p)
while —S.isEmpty()

y «— S.remove(S.first())

ify<
is at the beginning or at the ny L zddLast(y)
end of a sequence, and else ”Ly _
hence takes O(1) time E.addLast(y)
Thus, the partition step of else {y>x}

quick-sort takes O(n) time G.addLast(y)

returnL, E, G

© 2004 Goodrich, Tamassia Quick-Sort 3

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962524679

N

(79 579

N N
2-2)) [] =9

© 2004 Goodrich, Tamassia Quick-Sort 4

(42 5 24|

Execution Example

N

Pivot selection

[729437561]

© 2004 Goodrich, Tamassia Quick-Sort 5

Execution Example (cont.)

N

Partition, recursive call, pivot selection

(72943761]

© 2004 Goodrich, Tamassia Quick-Sort 6

Execution Example (cont.)

N

Partition, recursive call, base case

(72943761]

© 2004 Goodrich, Tamassia Quick-Sort 7

Execution Example (cont.)

#Recursive call, ..., base case, join

[72943761]

s

-~ N
@y 00

SR EY

© 2004 Goodrich, Tamassia Quick-Sort 8

Execution Example (cont.)

Recursive call, pivot selection

[72943761]
A
(24315123 4] |7 9 2]

151 (43 > 34|

© 2004 Goodrich, Tamassia Quick-Sort 9

Execution Example (cont.)

Partition, ..., recursive call, base case

[72943761]
/\
(24315123 4] (7912]

(43 > 34| B 959
2 e

© 2004 Goodrich, Tamassia Quick-Sort 10

151

Execution Example (cont.)

#Join, join

| 72943761 5123467709

=

(24315123 4] (792 5> 729 |

(43 > 34| B 959
2 e

© 2004 Goodrich, Tamassia Quick-Sort 11

151

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

#® One of L and G has size n — 1 and the other has size 0

The running time is proportional to the sum
n+(N—-1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [J
1 n-1 () []

© 2004 Goodrich, Tamassia Quick-Sort 12

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761] | 72943761]
(2431) (797) 1) (7294376)
Good call Bad call

A call is good with probability 1/2
s 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~)

Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Quick-Sort 13

Expected Running Time, Part 2

& Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k

For a node of depth i, we expect
= i/2 ancestors are good calls

Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
#® The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

expected height

A

O(log n)

= The size of the input sequence for the current call is at most (3/4)"2n

time per level

(s(r) J ————————————— O(n)

© 2004 Goodrich, Tamassia Quick-Sort

total expected time: O(n log n)

14

In-Place Quick-Sort

Quick-sort can be implemented
to run in-place

In the partition step, we use

N

Algorithm inPlaceQuickSort(S, I, r)

replace operations to rearrange Input sequence S, ranks | and r
the elements of the input Output sequence S with the
sequence such that elements of rank between | and r
= the elements less than the rearranged in increasing order
pivot have rank less than h ifl=r
= the elements equal to the pivot return
have rank between h and k | < a random integer between | and r
= the elements greater than the X < S.elemAtRank(i)
pivot have rank greater than k (h, k) < inPlacePartition(x)
The recursive calls consider inPlaceQuickSort(S, I, h — 1)
= elements with rank less than h inPlaceQuickSort(S, k + 1, 1)
= elements with rank greater
than k

© 2004 Goodrich, Tamassia Quick-Sort 15

In-Place Partitioning

Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

[(32510735927989769] (pivot =6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

|£|:

(32510[7[3592[79897609 |
| — | —

"

© 2004 Goodrich, Tamassia Quick-Sort 16

N

Summary of Sorting Algorithms

Algorithm Time Notes
S 5 = in-place
selection-sort O(n%) = slow (good for small inputs)
: — 5 = in-place
Insertion-sort O(n) = slow (good for small inputs)
uick-sort O(n log n) | = in-place, randomized
q expected = fastest (good for large inputs)
= in-place
heap sort O(n Iog n) = fast (good for large inputs)
= sequential data access
merge-sort O(n log n) = fast (good for huge inputs)
© 2004 Goodrich, Tamassia Quick-Sort 17

