Quick-Sort

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer
 paradigm:
- Divide: pick a random element x (called pivot) and partition S into
- L elements less than \boldsymbol{x}
- \boldsymbol{E} elements equal \boldsymbol{x}

- G elements greater than x
- Recur: sort L and G
- Conquer: join L, E and G

Partition

- We partition an input sequence as follows:
- We remove, in turn, each element y from S and
- We insert \boldsymbol{y} into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
- Thus, the partition step of quick-sort takes $\boldsymbol{O}(\boldsymbol{n})$ time

```
Algorithm partition( \(\boldsymbol{S}, \boldsymbol{p}\) )
    Input sequence \(S\), position \(p\) of pivot
    Output subsequences \(\boldsymbol{L}, \boldsymbol{E}, \boldsymbol{G}\) of the
        elements of \(S\) less than, equal to,
        or greater than the pivot, resp.
    \(L, E, G \leftarrow\) empty sequences
    \(x \leftarrow\) S.remove ( \(p\) )
    while \(\neg\) S.isEmpty ()
        \(y \leftarrow\) S.remove(S.first())
        if \(y<x\)
        L.addLast(y)
        else if \(y=x\)
        E.addLast(y)
        else \(\{\boldsymbol{y}>\boldsymbol{x}\}\)
        G.addLast(y)
    return \(L, E, G\)
```


Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Execution Example

*Pivot selection

Execution Example (cont.)

-Partition, recursive call, pivot selection

Execution Example (cont.)

- Partition, recursive call, base case

Execution Example (cont.)

- Recursive call, ..., base case, join

Execution Example (cont.)

- Recursive call, pivot selection

Execution Example (cont.)

-Partition, ..., recursive call, base case

Execution Example (cont.)

- Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of \boldsymbol{L} and G has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1
$$

- Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ depth time

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
- Good call: the sizes of L and G are each less than $3 s / 4$
- Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

A call is good with probability $1 / 2$

- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$
- For a node of depth i, we expect
- i/2 ancestors are good calls
- The size of the input sequence for the current call is at most (3/4) $)^{i / 2} \boldsymbol{n}$
- Therefore, we have
- For a node of depth $2 \log _{4 / 3} n$, the expected input size is one
- The expected height of the quick-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
- The amount or work done at the nodes of the same depth is $\boldsymbol{O}(\boldsymbol{n})$
- Thus, the expected running time of quick-sort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k
The recursive calls consider
- elements with rank less than h

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the
elements of rank between \boldsymbol{l} and \boldsymbol{r} rearranged in increasing order
if $l \geq r$

return

$i \leftarrow$ a random integer between \boldsymbol{l} and \boldsymbol{r}
$x \leftarrow$ S.elemAtRank(i)
$(h, k) \leftarrow \operatorname{inPlacePartition}(x)$
inPlaceQuickSort(S, l, h-1)
inPlaceQuickSort(S, $k+1, r$)

- elements with rank greater than k

In-Place Partitioning

- Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

$325107359279897 \underline{6} \quad($ pivot $=6)$
Repeat until j and k cross:
- Scan j to the right until finding an element $\geq x$.
- Scan k to the left until finding an element < x.
- Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	- in-place - slow (good for small inputs)
insertion-sort	$\boldsymbol{O}\left(n^{2}\right)$	- in-place - slow (good for small inputs)
quick-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ expected	- in-place, randomized - fastest (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- in-place - fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- sequential data access - fast (good for huge inputs)

