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Quick-Sort

# Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

= Divide: pick a random
element x (called pivot) and
partition S into

» L elements less than x

+ E elements equal x

* G elements greater than x
m Recur:sort Land G

= Conquer: join L, E and G

N
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Partition

# We partition an input
sequence as follows:

= We remove, in turn, each
element y from S and

m WeinsertyintolL, EorgG,
depending on the result of
the comparison with the
pivot x

# Each insertion and removal

N

]

L

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G <« empty sequences
X <~ S.remove(p)
while —S.isEmpty()

y «— S.remove(S.first())

ify<
is at the beginning or at the ny L zddLast(y)
end of a sequence, and else ”Ly _
hence takes O(1) time E.addLast(y)
# Thus, the partition step of else {y>x}

quick-sort takes O(n) time G.addLast(y)

returnL, E, G

© 2004 Goodrich, Tamassia Quick-Sort 3




Quick-Sort Tree

# An execution of quick-sort is depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1
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Execution Example

N

# Pivot selection

[ 729437561 ]
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Execution Example (cont.)

N

# Partition, recursive call, pivot selection

(72943761 ]
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Execution Example (cont.)

N

# Partition, recursive call, base case

(72943761 ]
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Execution Example (cont.)

#Recursive call, ..., base case, join

[ 72943761 ]
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Execution Example (cont.)

# Recursive call, pivot selection

[ 72943761 ]
A
(24315123 4] |7 9 2 ]

151 (43 > 34|

____________
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Execution Example (cont.)

# Partition, ..., recursive call, base case

[ 72943761 ]
/\
(24315123 4] (7912 ]

(43 > 34| B 959
2 e
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Execution Example (cont.)

#Join, join

| 72943761 5123467709

=

(24315123 4] (792 5> 729 |

(43 > 34| B 959
2 e
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Worst-case Running Time

# The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

#® One of L and G has size n — 1 and the other has size 0

# The running time is proportional to the sum
n+(N—-1)+...+2+1

# Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [ J
1 n-1 () [ ]
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Expected Running Time

# Consider a recursive call of quick-sort on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761 ] | 72943761 ]
(2431 ) (797 ) 1) (7294376 )
Good call Bad call

# A call is good with probability 1/2
s 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~ )

Bad pivots Good pivots Bad pivots
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Expected Running Time, Part 2

& Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k

# For a node of depth i, we expect
= i/2 ancestors are good calls

# Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
#® The amount or work done at the
nodes of the same depth is O(n)

# Thus, the expected running time
of quick-sort is O(n log n)

expected height

A

O(log n)

= The size of the input sequence for the current call is at most (3/4)"2n

time per level

( s(r) J ————————————— O(n)
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total expected time:  O(n log n)
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In-Place Quick-Sort

# Quick-sort can be implemented
to run in-place

# In the partition step, we use

N

Algorithm inPlaceQuickSort(S, I, r)

replace operations to rearrange Input sequence S, ranks | and r
the elements of the input Output sequence S with the
sequence such that elements of rank between | and r
= the elements less than the rearranged in increasing order
pivot have rank less than h ifl=r
= the elements equal to the pivot return
have rank between h and k | < a random integer between | and r
= the elements greater than the X < S.elemAtRank(i)
pivot have rank greater than k (h, k) < inPlacePartition(x)
# The recursive calls consider inPlaceQuickSort(S, I, h — 1)
= elements with rank less than h inPlaceQuickSort(S, k + 1, 1)
= elements with rank greater
than k
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In-Place Partitioning

# Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

[(32510735927989769 ] (pivot =6)

# Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

|£|:

(32510[7[3592[79897609 |
| — | —

"
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Summary of Sorting Algorithms

Algorithm Time Notes
S 5 = in-place
selection-sort O(n%) = slow (good for small inputs)
: — 5 = in-place
Insertion-sort O(n ) = slow (good for small inputs)
uick-sort O(n log n) | = in-place, randomized
q expected = fastest (good for large inputs)
= in-place
heap sort O(n Iog n) = fast (good for large inputs)
= sequential data access
merge-sort O(n log n) = fast (good for huge inputs)
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