
An Introduction to Scheme and its Implementation

Paul R� Wilson� University of Texas

wilson�cs�utexas�edu

http���www�cs�utexas�edu�users�wilson

Copyright c� ���� Paul R� Wilson

�

Chapter �� Overview �

� Overview

This book provides an introduction to Scheme for programmers	it is not for
rst�time pro�

grammers� but for people who already know how to program �at least a little and are interested

in learning Scheme�

��� Scheme� A Small But Powerful Language

� need to improve this introductory blather����

Scheme is a clean and fairly small but powerful language� suitable for use as a general�purpose

programming language� a scripting language� an extension language embedded within applications�

or just about anything else�

Scheme was designed to lend itself to a variety of implementation strategies� and many imple�

mentations exist	most of them free software� There are straightforward interpreters �like BASIC

or Tcl� compilers to fast machine code �like C or Pascal� and compilers to portable interpretive

virtual machine code �like Java�

Several extended implementations of Scheme exist� including our own RScheme system� an

extremely portable implementation of Scheme with an integrated object system and powerful ex�

tensibility features�

This is the
rst of three planned documents on Scheme� Scheme implementation� and the

RScheme language and its implementation� When they�re all
nished� I may combine them into a

big book� All three will be in Texinfo format� so that they can be printed out as hardcopy manuals�

browsed online as info documents �with the Info browser� or the Info system for the Emacs editor�

or converted automatically to HTML format for browsing with a web browser� Whichever way

you�re reading� this� welcome to Scheme�

� note� the current draft is only available in postScript form� because I haven�t done all of the

hyperlinking for the Info and HTML versions� �

Chapter �� Overview �

��� Who Is this Book For�

This book is for people who are interested in how Scheme works� or people who are interested

in Scheme in terms of programming language design	as well as people who are just interested in

using Scheme�

There�s not much con�ict between these goals� since one of the best ways to learn Scheme	

and important principles of language design	is to see how to implement Scheme� in Scheme� I�ll

illustrate the power of Scheme by showing a couple of simple interpreters for subsets of Scheme�

and a simple compiler� A compiler for Scheme can be surprisingly simple and understandable�

This is a fairly traditional approach� pioneered by Abelson and Sussman in Structure and Inter�

pretation of Computer Programs� which is a widely used and excellent introductory programming

text� This approach has been followed� more or less� in several other introductory books on Scheme

programming� Most of those books� though� are for beginning programmers� While I think Scheme

is a great
rst language� there are many people out there who�ve had to su�er through C or Pascal

or whatever� and don�t want to wade through an introductory programming book just to learn

Scheme�

My approach is di�erent from most of the current books on Scheme� in several ways� �When it�s

�nished� this book will be hypertext� and can be kept online in online for handy reference in any

of several cross�indexed formats����

I will breeze through basic programming ideas	for example� I assume you have some idea what

a variable is� and what recursion is�

I take a more concrete approach than many Scheme writers do� because I�ve found many students

nd it easier to understand� Every now and then I�ll dip below the language level� and tell you how

most actual implementations of the language work� I
nd that this concreteness helps disambiguate

things in many students� minds	as well as in my own�

I do not start from a functional programming perspective that pretends that Scheme executes

by rewriting expressions� �If that doesn�t mean anything to you� de
nitely don�t worry about it�

I take Scheme to be a special case of a weakly object�oriented procedural language� By weakly

object oriented� I don�t mean that it�s object�oriented in the sense of having inheritance and so

on	though several extended versions of Scheme do� I just mean that the values in the language are

data objects �records� etc� whose identities may be signi
cant	that is� you can compare pointers

to two objects to see whether they are the very same object� not just and whether they have the

Chapter �� Overview �

same state	and objects may have mutable �changable state� �This view is developed further in

RScheme� which is a fully object�oriented language that happens also to be Scheme� But that�s a

di�erent book� not yet written�

Some people may not like this approach� since I start talking about state and assignment very

early� It is generally considered bad style in Scheme to use assignments freely� and good style to write

mostly �functional� or �applicative� programs� While I agree that mostly�functional programming

is usually the right thing for Scheme� my intent is to make the semantics of the language clear early

on� and to make it clear to new Schemers that Scheme is a fairly normal programming language�

even if it is unusually clean and expressive� My experience in teaching Scheme has convinced me

that many people bene
t from an early exposure to the use of assignment� it clari
es fundamental

issues about variables and variable binding� Style is discussed later� when alternatives are clearer�

If you�ve ever tried to learn Lisp or Scheme before� but not gotten very far� this book may be

for you� Many people take to Lisp or Scheme like ducks to water� Some people don�t� however�

and I think that�s often because of the way that the material is presented	there�s nothing hard

about learning Lisp or Scheme� In this book� I try to explain things a little di�erently than they�re

usually explained� to avoid the problems that some people have learning from most of the existing

books� The concreteness of the explanations here may help overcome the unfamiliarity of these

languages� Scheme is really just a normal programming language� but one with powerful features

that can be used in special ways� too�

If you�re a programming language designer� but not �uent in Scheme or Lisp� this book may

help clarify what these languages are all about� It�s my belief that there has been a damaging split

between the Lisp world and the �conventional� imperative programming language world� largely

due to the di�erent vocabularies of the di�erent communities� Recent developments in Scheme have

not been widely appreciated by designers of other languages� �This theme will be developed further

in the other documents in this series� Even old features of Lisp� such as macros� have not been

properly understood by language designers in general� and their problems have been substantially

solved in Scheme�

If you�re a programming language implementor� or teaching programming language implemen�

tation� this book may be of use� �I use it in a course on languages and implementation� I�ll

present interpreters and a compiler for Scheme� Scheme an excellent vehicle for teaching principles

of language implementation� because its syntax is simple� and there is a straightforward evolution

from simple interpreters to more complex ones� and another straightforward move from a simple

interpreter to a compiler� This supports teaching the principles of language implementation with

a minimum of irrelevant detail�

Chapter �� Overview �

��� Why Scheme�

� Warn people that this is partisan propaganda��� �

Scheme is a very nice language for implementing languages� or for transformational programming

in general	that is� writing programs that write programs	or for writing programs that can easily

be extended or customized� The features that make Scheme attractive for implementing Scheme

also make it good for all kinds of things� including scripting� the construction of new languages and

application�speci
c programming environments� and so on�

� As you learn Scheme� you�ll probably realize that all interesting programs end up being� in

e�ect� application�speci
c programming environments����

Most Scheme systems are interactive� allowing you to incrementally develop and test parts of

your program� In this respect� it is much like BASIC or Tcl	but a far cleaner and more expressive

language� Scheme can also be compiled� to make programs run fast� This makes it easy to develop

in� like BASIC or Tcl� but still fast� like C� �Scheme isn�t usually quite as fast as C� but it�s usually

not too much slower� if you get a good Scheme compiler� So if you�re a Tcl or BASIC programmer

looking for a less crufty and�or fossilized language� Scheme may be for you�

Unlike most interactive languages� Scheme is well�designed� it�s not a kludge cobbled up by

some people with very limited applications in mind� and later extended past its reasonable scope

of application� It was designed from the outset as a general�purpose language� combining the best

features of two earlier languages� It is fairly radical revision of Lisp� incorporating the best features

of both Lisp and Algol �the ancestor of C� Pascal� et al��

�This is why Scheme has been adopted by several groups as an alternative to kludgey languages

like Tcl and Perl� The Free Software Foundation�s Guile extension language is based on Scheme� So

is the Scheme Shell �scsh� which is a scripting language for UNIX� The CAD Framework Initiative

has adopted Scheme as the glue for controlling Computer�Aided Design tools� The Dylan language

is also based on Scheme� though with a di�erent syntax and many extensions�

If you want to learn Lisp� Scheme is a good place to start� Common Lisp is a big� somewhat messy

language� which is probably easiest to learn by starting with Scheme� Then you can understand

Common Lisp as a series of extensions �and signi
cant obfuscations of Scheme� Some of the best

features of Common Lisp were copied from Scheme�

Chapter �� Overview �

If you want to get something of the �avor of functional programming� you can do that in

Scheme	most well�written Scheme programs are largely functional� because that�s simply the

easiest way to do many interesting things�

And if you just want to learn to program better� Scheme may open your eyes to new ways of

thinking about programs� Many people prototype programs in Scheme� because it�s so easy� even

if they eventually have to recode them in other languages to satisfy their employers�

��� Why Scheme Now�

Scheme is not a new language	it�s been around and evolving slowly for �� years�

The evolution of Scheme has been slow� because the people who standardize Scheme have been

very conservative	features are only standardized when there is a near�universal consensus on how

they should work� The focus has been on quality� not industrial usability�

This policy has had two consequences� The
rst is that Scheme is a beautiful� extremely well�

designed language� The second is that Scheme has been �behind the curve�� lacking several features

that are useful in general�purpose languages� Gradually� though� Scheme has grown from a very

small language� suitable only for teaching concepts� to a very useful language�

The most important new feature of Scheme �in my view is lexically�scoped ��hygeinic� macros�

which allow the implementation of many language features in a portable and fairly e�cient way�

This allows Scheme to remain small� but also allows useful extensions to the base language to be

written as libraries� without a signi
cant performance penalty�

��� What this Book Is Not

This book isn�t a language de
nition for Scheme� or a manual for using any particular Scheme

implementation� There is a free language de
nition document for Scheme� easily available via

the internet� called the Revised Scheme Report� �There�s also an IEEE standard� I recommend

getting the Scheme report and printing it out� or browsing the html version with a web browser�

�http���www�cs�indiana�edu�scheme�repository�doc�standards�html It�s not very big� be�

cause Scheme is a pretty small language� I also recommend having a look at the documentation

for the particular implementation of Scheme you�re using�

Chapter �� Overview �

On the other hand� this book may serve as a passable approximation of a language manual most

of the time� �It may work better for this purpose once it�s �eshed out more and I�ve devised more

online indexing� It describes all of the important features of standard Scheme� clearly enough

that you can use them for most purposes� This is possible because Scheme is very clean and

�orthogonal�	most of its features don�t interact in surprising ways� so if you understand Scheme�

and do the �Scheme�ish� thing� Scheme will generally do what you expect�

For more information on Scheme� particular Scheme implementations� and so on� see the FAQ

�Frequently Asked Questions List on the usenet newsgroup comp�lang�scheme� It�s available from

the Scheme Repository via anonymous internet ftp from ftp�cs�indiana�edu in the directory

pub�scheme�repository� Or if you�re a World Wide Web user� visit the Scheme repository at

http���www�cs�indiana�edu�scheme�repository� The Scheme repository contains several free

implementations of Scheme� as well as a variety of useful programs� libraries� and papers�

��	 Structure of this Book

This book�s structure re�ects its tutorial intent� rather than any strong grouping of concepts�

In the next three chapters� ideas are introduced in the order that I think they�re easiest to learn�

Each chapter introduces a few more or less related ideas� with small code examples� and ends with

more examples of Scheme programs to show why the ideas are useful� The later chapters introduce

relatively independent topics�

� The following needs to be reworked a little� after the actual document structure settles down�

�

Chapter � �Introduction�� page � describes some basic features of Scheme� including a little syn�

tax� and gives code examples to show that Scheme can be used like most programming languages	

you don�t give up much when using Scheme� and it�s not hard to switch�

Chapter � �Using Scheme �A Tutorial�� page �� gives a tutorial on Scheme programming�

intended to be used while sitting at a running Scheme system and trying examples interactively�

Chapter � �Writing an Interpreter�� page ��� presents an simple interpreter for a subset of

Scheme�

Chapter � �Environments and Procedures�� page ��� describes Scheme�s binding environments

and procedures� and shows how procedural abstraction can be very powerful in a language with

Chapter �� Overview �

rst�class procedures� block structure inde
nite extent �garbage collection� It then shows an imple�

mentation of binding environements and procedures for the interpreter from the previous chapter�

and shows how to use Scheme�s binding and procedure�de
ning constructs in fairly sophisticated

ways�

Section ����� �Recursion in Scheme�� page ��� discusses recursion� and especially tail recursion�

Chapter � �Quasiquotation and Macros�� page ��� presents quasiquotation� a means of construct�

ing complex data structures and variants of stereotyped data structures� and then presents macros�

a facility for de
ning your own �special forms� in Scheme� Macros let you de
ne your own control

constructs� data�structuring systems such as object systems� etc� �If you�ve ever been daunted by

problems with C or Lisp macros� don�t worry	Scheme macros
x the major problems with older

macro systems� Macros are also interesting because they�re often used in the implementation of

Scheme itself� They allow the language implementation to be structured in a layers� with most of

the language written in the language itself� by bootstrapping up from a very small core language

understood by the compiler�

Chapter � �Other Useful Features�� page ��� presents a variety of miscellaneous features of

Scheme that are useful in writing real programs� They�re not part of the conceptual core of Scheme�

but any useful language should have them�

Section ������� �Records and Object Orientation�� page ��� � � �

Section ���� �call�with�current�continuation�� page ��� discusses
rst�class continuations� the

most powerful control construct in Scheme� Continuations allow you to capture the state of the

activation stack �sort of� and return to that state to resume at a given point in a program�s

execution� Continuations are conceptually weird� and are not to be used casually� but tremendously

expressive for things like backtracking� threads� etc�

Section ������� �Compiling Scheme�� page ��� presents an example Scheme program that happens

to be a simple compiler for Scheme� It�s a �toy� compiler� but a real compiler nonetheless� with

all of the basic features of any Scheme compiler� but minimal boring �support� hacks to perform

tokenization� storage management� etc�

Chapter �� Introduction �

� Introduction

In this chapter� I�ll give a quick overview of some basic features of Scheme� enough to get started

writing some programs�

This chapter moves fairly quickly� brie�y introducing about half of the ideas in Scheme� In

later chapters� I�ll explain and demonstrate these features more fully� and introduce other advanced

features�

This chapter is meant to be read concurrently with the
rst half of the next one� which includes a

tutorial on using Scheme interactively� I�ve put in directives saying when you should work through

parts of the next chapter� After becoming familiar with Scheme� it will serve as a basic reference�

you can consult the next chapter for basic examples� and later chapters for advanced techniques�

If you�re �uent in concepts of programming languages� and especially if you�ve programmed in

Lisp� you may be able to breeze through this chapter to get a sense of what Scheme is about� If

you�re �uent in programming language concepts� you may be able to read straight through this

section�

	NOTE TO MY CS
�� STUDENTS� don�t try to breeze through this� Do the tutorial hunks

after each hunk of this chapter�

If you intend to actually program in Scheme� you should de
nitely follow the directives and read

parts of the next chapter� rather than trying to plow straight through this one�

��� What is Scheme�
Hunk A�

��
Hunk A starts here�

��

First� a bunch of jargon	ignore it if you want to�

Scheme is a lexically�scoped� block structured� dynamically typed� mostly functional language�

It is a variant of Lisp� It has
rst�class procedures with block structure and inde
nite extent�

Parameter passing is by value� but the values are references� It has
rst�class continuations to

Chapter �� Introduction ��

allow the construction of new control abstractions� It has lexically�scoped ��hygeinic� macros to

allow de
nition of of new syntactic forms� or rede
nition of old ones�

If none of that means anything to you right now� don�t worry� Keep reading�

Scheme is designed to be an interactive and safe language� A normal Scheme system is really an

interactive program that you can use to run parts of your Scheme program in the order you want�

When one has run� your program doesn�t just terminate� and your data don�t disappear	Scheme

askes you what to do next� and you can examine the data or tell Scheme to run another part of

the program�

Scheme is safe in that the interactive system generally won�t crash� If you make a mistake

that would crash the system� Scheme detects that� and asks you what to do about it� It lets you

examine and change the system�s state� and go on� This is a very di�erent style of programming and

debugging from the normal edit�compile�link�run�crash cycle of �batch� programming languages like

C and C���

��� Basic Scheme Features

I�ll go brie�y through some of the basic features of Scheme� giving little code examples for clarity�

����� Code Consists of Expressions

Like Lisp� Scheme is written as pre
x expressions� with parentheses for grouping� Pre
x means

that the name of an operation comes
rst� before its operands �the things it operates on�

In Scheme� there�s no distinction between expressions �like arithmetic operations and statements

�like an if or a loop or a declaration� They�re all �expressions�	it�s a very general term�

������� Parenthesized Pre�x Expressions

In C or Pascal� a call to procedure foo with arguments bar and baz is written

foo	bar
baz��

Chapter �� Introduction ��

but in Scheme it�s written

	foo bar baz�

Note that the procedure name goes inside the parentheses� along with the arguments� Get used

to it� It may seem less odd if you think of it as being like a operating system shell command	e�g��

rm foo� or dir bar	but delimited by parentheses�

Just as in C� expressions can be nested� Here�s a call to a procedure foo� with nested procedure

call expressions to compute the arguments�

	foo 	bar x� 	baz y��

This is pretty much equivalent to C�s

foo	bar	x�
baz	y���

As in C or Pascal� the argument expressions in a procedure call are evaluated before actu�

ally calling the procedure� the resulting values are what�s passed to the procedure� In Scheme

terminology� we say that the procedure is applied to the actual argument values�

You�ll notice soon that Scheme has very few special characters� and that expressions are generally

delimited by parentheses or spaces� For example� a�variable is a single identi
er� not a subtraction

expression� Identi
ers in Scheme can include not only alphabetic characters and digits� but several

other characters� such as � �� �� and �� Long identi
ers are often constructed from phrases� to make

it clear what they mean� using hyphens to separate words� for example� you can have a variable

named list�of�first�ten�lists� You can use characters like �� �� �� and � within an identi
er�

as in before�tax�total�tax� or estimate�epsilon�

One consequence of Scheme�s liberal rules for constructing identi
ers is that spaces are impor�

tant� You must put one or more spaces �or carriage returns between identi
ers except where special

characters �usually parentheses make the divisions obvious� For example� the addition expression

	� � a� can�t be written 	�� a� or 	��a� or 	� �a�� �It can be written 	 � � a �� because extra

whitespace between tokens is ignored�

Chapter �� Introduction ��

������� Expressions Return Values� But May Have Side�E�ects

Scheme expressions combine the features of expressions and statements� They return values� but

they can also have side e�ects	i�e�� they can change the state of variables or objects by assignment�

The variable assignment operation in Scheme is set� pronounced �set�bang�� If we want to

assign the value � to the variable foo� we write

	set foo ��

which is pretty much equivalent to C�s

foo � ��

Note that 	set foo �� looks like a function call� because everything uses pre
x notation� but

it�s not really a call� it�s a di�erent kind of expression�

You should not use assignments a lot in Scheme programs� It�s usually a sign of bad style� as I�ll

explain later� I�ll also show how to program in a style that doesn�t need side e�ects much� They�re

there if you need them� though�

When you write a procedure that modi
es its arguments� rather than just just returning a

value� it�s good style to give it a name that ends with an exclamation mark� This reminds you and

anybody reading your code that the procedure changes something that already exists� rather than

just returning a value such as a new data structure� Most of the standard Scheme procedures that

change state are named this way�

Most Scheme procedures don�t modify anything� however� For example� the standard procedure

reverse takes a list as its argument and returns a list of the same elements in the opposite order�

That is it returns a kind of reversed copy of the original list� without modifying the original at all�

If you wrote a procedure that returned the same list� but modi
ed so that its elements were in the

opposite order� you�d probably call it reverse� This warns people that a list that is passed to

reverse may be changed�

One side�e�ecting procedure we�ll use in examples is display� display takes a value and writes

a printed representation to the screen or a
le� If you give it one argument� it writes to the �standard

output�� by default� that�s the terminal or other display�

Chapter �� Introduction ��

For example� if you want to show the user the printed representation of the number ����� you

can use the expression

	display �����

The side e�ect of executing this expression is to write the ���� on the user�s screen� �display

automatically converts the number to a string of characters so that you can read it�

Note that display doesn�t have an exclamation point at the end of its name� because it doesn�t

side�e�ect the argument you give it to print� You can give it a data structure and be sure that it

won�t modify it� display does have a side�e�ect� though	it changes the state of the screen �or
le

that it writes to�

display is fairly �exible� and can write the printed representations of many common Scheme

objects� and even fairly complex data structures�

Among many other things� display can print character strings� �Strings are another kind of

Scheme object� You can write a literal string in double quotes� �like this�� and Scheme constructs

a string object to hold that character sequence�

The expression 	display �Hello
 world� has the side e�ect of writing Hello
 world to the

standard output� which is usually the user�s screen�

This makes display very useful for debugging� and for little examples� as well as for writing

interactive programs� A similar procedure� write is used for saving data structures to
les� they

can then be copied back into memory using read�

In a later chapter� I�ll show how to write to
les by passing a second argument to display that

tells it where to send the output� For now� you should just use display with exactly one argument�

Don�t try to pass display several things and expect it to print them all�

������� De�ning Variables and Procedures

You can de
ne a variable in Scheme using a define�

	define my�variable ��

Chapter �� Introduction ��

This tells Scheme to allocate space for my�variable� and initialize that storage with the value

��

In Scheme� you always give a variable an initial value� so there�s no such thing as an uninitialized

variable or an unininitialized variable error�

Scheme values are always pointers to objects� so when we use the literal �� Scheme interprets

that as meaning a pointer to the object �� Numbers are objects you can have pointers to� just like

any other kind of data structure� �Actually� most Scheme implementations use a couple of tricks

to avoid pointer overheads on numbers� but that doesn�t show up at the language level� You don�t

have to be aware of it�

After the above de
nition� we can draw the resulting situation like this�

���������

foo � ����������

���������

The define expression does three things�

� It declares to Scheme that we�re going to have a variable named foo in the current scope� �I�ll

talk about scoping a lot� later�

� It tells Scheme to actually allocate storage for the variable� The storage is called a binding	we

�bind� the variable foo to a particular piece of memory� so that we can refer to that storage

by the name foo�

� It tells Scheme what initial value to put in the storage�

These three things happen when you de
ne variables in other languages� too� In Scheme we

have names for all three�

In the picture� the box represents the fact that Scheme has allocated storage for a variable� The

name foo beside the box means that we�ve given that storage the name foo� The arrow says that

the value in the box is a pointer to the integer object �� �Don�t worry about how the integer object

is actually represented� It doesn�t really matter�

You can de
ne new procedures with define� too�

Chapter �� Introduction ��

	define 	two�times x�
	� x x��

Here we�ve de
ned a procedure named two�times� which takes one argument� x� It then calls

the addition procedure � to add the argument value to itself� and returns the result of the addition�

Notice the sytnactic di�erence between the variable de
nition and the procedure de
nition� for

a procedure de
nition� there are parentheses around the name� and the argument name�s follow

that inside the parentheses�

This resembles the way the procedure is called� Consider the procedure call expression 	two�

times ��� which returns ��� it looks like the de
nition�s 	two�times x�� except that we�ve put the

actual argument � in place of the formal parameter x�

Here�s a bit of programming language terminology you should know� the arguments you pass to

a procedure are sometimes called actual parameters� The argument variables inside the procedure

are called formal parameters	they stand for whatever is actually passed to the procedure at run

time� �Actual� means what you actually pass to the procedure� and �formal� means what you call

that on the inside of the procedure� Usually� I�ll just talk about �arguments�� but that�s the same

thing as �actual parameters�� Sometimes I�ll talk about �argument variables�� and that�s the same

thing as �formal parameters��

You can de
ne a procedure of zero arguments� but you still have to put parentheses around the

procedure name� to make it clear that you�re de
ning a procedure� You put parentheses around its

name when you call it� too� to make it clear that it�s a procedure call�

For example� this is a de
nition of a variable whose initial value is ���

	define foo ���

but this is a de
nition of a procedure foo which returns �� when called�

	define 	foo� ���

���������

foo � �����������procedure�

���������

Chapter �� Introduction ��

This picture shows that when you de
ne a procedure� you�re really de
ning a variable whose

value happens to be a 	pointer to a procedure� For now� you don�t really have to worry about that�

The main thing to know is that now you can call the procedure by the name foo� For example�

the procedure call expression 	foo �� will return ��� because all the body of the procedure does is

return the value ���

Usually� we indent procedure de
nitions like this� with the body starting a new line� and indented

a few characters�

	define 	foo�
���

This makes it clearer that it�s a procedure de
nition�

������	 Most Operators are Procedures

In conventional programming languages like C and Pascal� there�s an awkward distinction be�

tween procedure calls and other kinds of expressions� In C� for example� 	a � b� is an expression�

but foo	a
b� is a procedure call� In C� you can�t do the same things with an operator like � that

you can do with a procedure�

In Scheme� things are much more uniform� both semantically and syntactically� Most basic

operations such as addition are procedures� and there is a uni
ed syntax for writing expressions	

parenthesized pre
x notation� So rather than writing 	a � b� in Scheme� you write 	� a b�� And

rather than writing foo	a
b�� you write 	foo a b�� Either way� it�s just an operation followed by

its operands� all inside parentheses�

For any procedure call expression �also called a combination� all of the values to be passed are

computed before the actual call to the procedure� �This is no di�erent from C or Pascal�

����� De�nitions vs� Assignments

Notice that we can give a variable a value in two ways� we can de
ne it� specifying an initial

value� or we can use set to change its value�

The di�erence between these two is that define allocates storage for a variable� and gives that

storage a name� set does not� You must always define a variable before set will work on it�

Chapter �� Introduction ��

For example� if there�s not already a de
nition of quux� the expression 	set quux ��� is an

error� and Scheme will complain� You�re asking Scheme to put �a pointer to �� in the storage

named by quux	but quux doesn�t name any storage yet� so it makes no sense�

It�s rather like I�d told you� �give this to Philboyd� and handed you some object� �say� a pencil�

If you don�t know anybody named Philboyd� you�re probably going to complain� set is like that�

We have to agree on what the word �Philboyd� means to before it makes sense to ask you to do

something to Philboyd� define is a way of giving meaning to an identi
er	making it refer to a

piece of storage	as well as giving a value to put there�

������� Special Forms

While most operations in Scheme are procedure calls� there are a few other kinds of expressions

you need to know about� which behave di�erently� They are called special forms�

You�ve already seen two of the
ve or six important special forms� define and the assignment

operator set�

Notice that set isn�t a procedure� because its
rst argument is not really an expression to be

evaluated in the normal way� to get a value to pass as an argument� It�s the name of a place to put

a value� �e�g�� if we say 	set a b�� we get the value of b� and put it into the storage named by a�

Likewise� define treats its
rst argument specially	the name of a variable or procedure isn�t

an expression that is evaluated and passed to define	it�s just a name� and you�re telling de
ne

to allocate some storage and use that name for it�

Other special forms we�ll see include control constructs� like if and do� and forms for de
ning

local variables� like let�

������� Control Structures are Expressions

Scheme control structures are expressions� and return values� An if expression is a lot like a

C if�then statement� but the �then� branch and the �else� branch are also expressions that return

values� the if expression returns the value of whichever subexpression it evaluates�

For example�

Chapter �� Introduction ��

	if 	� a b�

a

b�

returns the value of either the variable a� or the variable b� whichever is less �or the value of

b if they�re equal� If you�re familiar with ternary� expressions in C� this is like 	a � b� � a � b�

In Scheme� there�s no need for both an if statement and an if�like ternary expression operator�

because if �statements� are expressions�

Note that even though every expression returns a value� not all values are used	you can ignore

the return value of an if expression� The if special form can therefore be used to control what gets

executed� or to return a value� or both� It�s up to you�

The uniformity of value returning means that we never have to explicitly use a return statement�

so Scheme doesn�t have them� Suppose we wanted to write a function min to return the minimum

of two numbers� In C� we might do it this way�

int min	int a
 int b�

�

if 	a � b�

return a�

else

return b�

�

In Scheme� we can just do this�

	define 	min a b�

	if 	� a b�

a

b��

Whichever branch is taken� the value of the appropriate variable �a or b will be returned as the

value of that branch of the if� which is returned as the value of the whole if expression� and that

is returned as the return value of the procedure call�

Of course� you can also write a one�branch if� with no �else� clause�

� �Ternary� just means �takes three arguments�� the ternary operator in C is called that because

it�s the only ternary operator in C� all the others take fewer than three arguments�

Chapter �� Introduction ��

	if 	some�test�

	some�action��

The return value of a one�branch if is unspeci
ed in the case the condition is false� so if you�re

interested in the return value� you should use a two�branch if� and explicitly specify what should

be returned in both cases�

Notice that the �ow of control is top�down� through the nesting of expressions	if controls which

of its subexpressions is evaluated� which is like the nesting of control statements in most languages�

Values �ow back up from expressions to their callers� which is like the nesting of expressions in

most languages�

You can write an expression that is an ordered sequence of other expressions� using begin� For

example�

	begin 	foo�
	bar��

calls foo and then calls bar� In terms of control �ow� a 	begin ��� � expression is rather like a

begin ��� end block in Pascal� or a � ��� � block in C� �We don�t need an end keyword� because the

closing parenthesis does the job�

Scheme begin expressions aren�t just code blocks� though� because they are expressions that

return a value� A begin returns the value of the last expression in the sequence� For example� the

begin expression above returns the value returned by the call to bar�

The bodies of procedures work like begins as well� If the body contains several expressions�

they are evaluated in order� and the last value is returned as the value of the procedure call�

Here�s a procedure baz that calls foo and then calls bar and returns the result from the call to

bar�

	define 	baz�
	foo�
	bar��

Chapter �� Introduction ��

����� The Boolean Values �t and �f

Scheme provides a special unique object� whose written representation is �f� called false� This

object counts as false if it�s the result of a condition expression in an if �or cond expression� In

most Schemes� this is the only value that counts as false� and all others count as true�

The false object is not the same thing as the integer zero �as it is in C� and it�s not the same

thing as a null pointer �as it is in Lisp� The false object is a unique object�

For convenience and clarity� Scheme also provides another boolean value� written �t� which can

be used as a true value� Note that in general� any value other than false is true� but the special

boolean object �t is a good one to use when all you want to say is that something is true	returning

the true boolean makes it clear that all you�re returning is a true value� not some other value that

conveys more information�

Like other objects� Booleans are conceptually objects on the heap� and when you write �t or

�f� it means �a pointer to the canonical true object� or �a pointer to the false object��

Scheme provides a few procedures and special forms for operation on booleans� The procedure

not acts as a not operator� and always returns true or false ��t or �f� If applied to �f� it returns

�t� Since all other values count as true� applying not to anything else returns �f�

����	 Some Other Control�Flow Constructs
 cond� and� and or

We�ve already seen that the special form if is a kind of expression� which returns a value as

well as a�ecting control �ow� Scheme also has cond� a more general conditional construct� and and

and or� These are all value�returning expressions� they�re also special forms� not procedures� they

control whether expressions get evaluated� depending on the values returned by other expressions�

����	�� cond

In most procedural programming languages� you can write a sequence of if tests using a an

extended version of if� something like this�

Chapter �� Introduction ��

if test� then

action�	��

else if test� then

action�	��

else if test� then

action�	��

else

action�	��

Scheme has a similar construct� a special form called cond� The above example might be written

in Scheme as

	cond 	test�

	action���

	test�

	action���

	test�

	action���

	else

	action����

Notice that each test�and�action pair is enclosed in parentheses� In this example� test� is just

a variable reference� not a procedure call� i�e�� we�re testing to see if the value of the variable test�

is �f� if not� we�ll execute 	action��� i�e�� call the procedure action�� If it is false� control �falls

through� to the next test� and keeps going until one of the tests evaluates to a true value �anything

but �f�

Notice that we indent the actions corresponding to a test by one character� This lines the actions

up directly under the tests� rather than under the opening parenthesis that groups them together�

The else clause of a cond is optional� if present� that branch will be taken �by default�	if

none of the other conditions evaluates to a true value� the else branch will be taken�

We don�t really need the else clause� because we could get the same e�ect by using a test

expression that always evaluates to a true value� One way of doing this is to use the literal �t� the

true boolean� because it�s always true�

Chapter �� Introduction ��

	cond 	test�

	action���

	test�

	action���

	test�

	action���

	�t � literal �t is always true
 so

	action���� � this branch is taken if we get this far

The code above is equivalent to a nested set of if expressions�

	if test�

	action��

	if test�

	action��

	if test�

	action��

	if �t

	action������

Like an if� a cond returns the value of whatever �branch� it executes� If test� is true� for

example� the above cond will return the value returned from the procedure call 	action���

Remember that each branch of an if is a single expression� if you want to execute more than one

expression in a branch� you have to wrap the expressions in a begin� With cond� you don�t have

to do this� You can follow a test expression with more than one action expression� and Scheme will

evaluate all of them� in order� and return the value of the last one� just like a begin or a procedure

body�

Suppose we want to modify the above cond example so that it prints out the branch it�s taking�

as well as evaluating the action expression and returning its value� We can do this�

Chapter �� Introduction ��

	cond 	test�

	display �taking first branch��

	action���

	test�

	display �taking second branch��

	action���

	test�

	display �taking third branch��

	action���

	else

	display �taking fourth 	default� branch��

	action����

This cond will return the same value as the original� because it always returns the value of the

last expression in a branch� As it executes� however� it also displays what it�s doing� We can use

the cond both for value and for e�ect�

Be particularly careful about parentheses with cond� You must enclose each branch with a pair

of parentheses around the test expression and the corresponding sequence of action expressions� If

you want to call a procedure in any of those expressions� you must also put parentheses around

the procedure call� In the above example� if we wanted the
rst test to be a call to a procedure

test�	rather than just fetching the value of the variable test�	we�d write

	cond 		test��
	display �taking first branch��
	action���
����

instead of

	cond 	test�
	display �taking first branch��
	action���
����

�Note the indenting here� We usually line up a test and the corresponding sequence of actions

vertically� whether or not the expression starts with a parentheses� That is� we indent one space

past the opening parenthesis of the pair of parentheses that goes around them all�

Chapter �� Introduction ��

Don�t be afraid to use cond for conditionals with only one or two branches� cond is often more

convenient than if because it can execute a sequence of expressions� instead of just one� It�s not

uncommon to see things like this�

���

	cond 		foo�

	bar�

	baz���

���

Don�t be confused by this	there�s only one branch to this cond� like a one�branch if� We could

have written it

���

	if 	foo�

	begin 	bar�

	baz���

���

It�s just more convenient to use cond so that we can call bar before calling baz and returning

its result� without explicitly writing a begin expression to sequence them�

We say that cond is syntactic sugar for nested ifs with begins around the branches� There�s

nothing we can do with cond that we can�t do straightforwardly with if and begin	cond just

gives us a �sweetened� syntax� i�e�� one that�s more convenient�

Most of the special forms in Scheme are like this	they�re just a convenient way of writing things

that you could write using more basic special forms� �There are only
ve �core� special forms that

are really necessary� and the others are equivalent to combinations of those special forms�

����	�� and and or

The special forms and and or can be used as logical operators� but they can also be used as

control structures� which is why they are special forms�

and takes any number of expressions� and evaluates them in sequence� until one of them returns

�f or all of them have been evaluated� At the point where one returns �f� and returns that value

Chapter �� Introduction ��

as the value of the and expression� If none of them returns �f� it returns the value of the last

subexpression�

This is really a control construct� not just a logical operator� because whether subexpressions

get evaluated depends on the reults of the previous subexpressions�

and is often used to express both control �ow and value returning� like a sequence of if tests�

You can write something like

	and 	try�first�thing�
	try�second�thing�
	try�third�thing��

If the three calls all return true values� and returns the value of the last one� If any of them

returns �f� however� none of the rest are evaluated� and �f is returned as the value of the overall

expression�

Likewise� or takes any number of arguments� and returns the value of the
rst one that returns

a true value �i�e�� anything but �f� It stops when it gets a true value� and returns it without

evaluating the remaining subexpressions�

	or 	try�first�thing�
	try�second�thing�
	try�third�thing��

or keeps trying subexpressions until one of them does return a true value� if that happens� or

stops and returns that value� If none of them returns anything but �f� it returns �f�

��
This is the end of Hunk A�

TIME TO TRY IT OUT

At this point
 you should go read Hunk B of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk B� which starts at Section ��� �Interactive Prog Envt�� page ���

����� Comments �Hunk C

Chapter �� Introduction ��

��
Hunk C starts here�
��

� I should say this earlier� �

You can and should put comments in your Scheme programs� Start a comment with a semicolon�

Scheme will ignore any characters after that on a line� �This is like the �� comments in C���

For example� here�s a variable de
nition with a comment after it�

	define foo ��� � define foo with an initial value of ��

Of course� most comments should tell you things that aren�t patently obvious from looking at

the code�

Standard Scheme does not have block comments like C�s ��� � ��� comments�

����� A Note about Parentheses and Indenting

The two biggest barriers to learning Scheme are probably parentheses and indenting� In Scheme�

parentheses are used a little di�erently than in most programming languages� Indenting is also

very important� because the surface syntax of the language is so regular� When reading Scheme

code� experienced programmers read the indenting structure as much as the tokens� If you don�t

parenthesize correctly� your programs won�t run correctly� And if you don�t indent them correctly�

they�ll be hard to understand�

The syntax of Scheme is more similar to that of C or Pascal than it may appear at
rst glance�

After all� almost all programming languages are based on nested �statements or expressions� Like

C or Pascal� Scheme is free�form� and you can indent it any way you want�

Some people write Scheme code indented like C� with closing parentheses lined up under opening

parentheses to show nesting� �People who do this are usually beginners who haven�t learned to use

an editor properly� as I�ll explain later� They might write

Chapter �� Introduction ��

	if a

	if b

c

d

�

e

�

rather than

	if a

	if b

c

d�

e��

The
rst version looks a little more like C� but it�s not really easier to read� The second

example shows its structure just as clearly if you know how to read Scheme� and is in fact easier

to read because it�s not all stretched out� The second example takes up less space on the page or

a computer screen� �This is important when editing code in a window and doing other things in

another window	you can see more of your program at a time�

There are a couple of things to keep in mind about parentheses in Scheme� The
rst thing is

that parentheses are signi�cant� In C or Pascal� you can often leave parentheses out� because of

�operator precedence parsing�� where the compiler
gures out the grouping� More importantly�

you can often add extra parentheses around expressions without a�ecting their meanings�

This is not true in Scheme� In Scheme� the parentheses are not just there to clarify the association

of operators� In Scheme� parentheses are not optional� and putting extra parentheses around things

changes their meaning� For example� the expression foo is a variable reference� whose e�ect is to

fetch the value of the variable foo� On the other hand� the expression 	foo� is a call to the

procedure named foo with zero arguments�

�Notice that even in C� it�s not generally acceptable to write a procedure call with too few

parentheses or too many� a call foo	a
 b� can�t be written just foo a
 b or as foo		a
 b���

In general� you have to know where parentheses are needed and where they are not� which

requires understanding Scheme�s rules� Some parentheses indicate procedure calls� while others are

Chapter �� Introduction ��

just delimiters of special forms� Luckily� the rules are simple� they should become very clear in the

next chapter or two�

The other thing to know about parentheses is that they have to match� For every opening

parenthesis there has to be a closing parenthesis� and of course it must be in the right place�

������� Let Your Editor Help You

Matching parentheses is easy if you have a decent text editor� For example� in vi� you can

position the cursor over a parenthesis and hit �� and it will scan forward or backward �from an

opening or closing parenthesis� respectively to
nd the matching parenthesis and highlight it�

skipping over any matched parenthesis pairs� it will warn you if no match is found�

Most editors have a feature like this� Learn to use it� It�s usually easy to get the opening

parentheses right� and then if you�re in doubt� use the editor to make sure you get the closing

parentheses in the right place�

Some editors� like Emacs� have special modes for editing Lisp and Scheme� This can be helpful�

but just helping match parentheses is the crucial thing for an editor for Scheme� One of the nice

things about the Emacs Scheme mode is that it will indent your code automatically if you like�

which will show you whether your expressions nest the way they think you do	if you don�t get

the parentheses right� the text will look funny and tip you o� to your error�

�One Emacs mode for Scheme is cmuscheme� which is available from the usual sources of Emacs

mode code� It�s just a set of Emacs Lisp routines that customizes Emacs to �understand� Scheme

syntax and help you format it� You use the Emacs Lisp package cmuscheme�el� and it gives you a

handy Scheme editing mode� It�s available from the Scheme Repository�

Even without a special package� an editor can help you a lot� For example� most modes in Emacs

automatically match parentheses� �ashing an opening parentheses when you type the corresponding

closing parenthesis� A few minutes
guring out how your editor matches parentheses will save you

a lot of time�

������� Indenting Procedure Calls and Simple Control Constructs

Chapter �� Introduction ��

������� Indenting cond

Be careful about parentheses and indenting with cond� Notice that the expressions within a

test�action clause are indented by only one character� but that�s very signi
cant� Without that

indenting� a cond is very hard to read�

	if 	a�
	begin 	b�

	c��
	begin 	e�

	f���

We could write it like this�

	cond 		a�
	b�
	c��
	else
	e�
	f���

Sometimes� when the clauses of a cond are small� a whole clause will be written out horizontally�

The above example is likely to be written like this�

	cond 		a� 	b� 	c��

	else 	d� 	e���

Also be careful about the parentheses around condition expressions� Notice that the parentheses

around 	a� are there because the condition is call to a with zero arguments� not because you always

put parentheses around the condition expression� �Notice that there are no parentheses around �t�

and there wouldn�t be parentheses around a if we just wanted to test the value of the variable a�

rather than call it and test the result�

������	 Indenting Procedure De�nitions

As I hinted earlier� there�s a special rule for indenting procedure de
nitions� You generally

indent the body of a procedure a few characters �I use �� but you don�t line the body expressions

up directly under the list of variable names�

Don�t do this�

Chapter �� Introduction ��

	define 	double x�

	� x x��

If you do this� a procedure de
nition looks like looks like a procedure call� or a normal variable

de
nition� To make it clearer you�re de
ning a procedure� do this�

	define 	double x�

	� x x��

This makes it clear that the 	double x� is a di�erent kind of thing from 	� x x�� The former

declares how the procedure can be called� and the latter says what it will do�

����� All Values are Pointers to Objects

As I said earlier� all values are conceptually pointers to objects on a heap� and you don�t ever

have to explicitly free memory�

By �object�� I don�t necessarily mean object in the object�oriented sense� I just mean data

objects like Pascal records or C structs� which can be referenced via pointers and may �or may not

hold state information�

Some versions of Scheme do have object systems for object�oriented programming� �This in�

cludes our own RScheme system� where standard Scheme types are all classes in a uni
ed object

system� In this book� however� we use the word �object� in a broader sense� meaning an entity

that you can have a pointer to�

������� All Values are Pointers

� some of this needs to be moved up� �

Conceptually� all Scheme objects are allocated on the heap� and referred to via pointers� This

actually makes life simple� because you don�t have to worry about whether you should dereference

a pointer when you want to use a value	you always do� Since pointer dereferencing is uniform�

procedures always dereference a pointer to a value when they really use the value� and you never

have to explicitly force the dereferencing�

Chapter �� Introduction ��

For example� the prede
ned Scheme procedure � takes two pointers to numbers� and automati�

cally dereferences both pointers before doing the addition� It returns a pointer to the number that�s

the result of the addition�

So when we evaluate the expression 	� � �� to add two to three� we are taking a pointer to the

integer � and a pointer to integer �� and passing those as arguments to the procedure �� � returns

a pointer to the integer �� We can nest expressions� e�g�� 	� 	� � �� ��� so that the pointer to
ve

is passed� in turn� to the procedure �� Since these functions all accept pointers as arguments and

return pointers as values� you can just ignore the pointers� and write arithmetic expressions the

way you would in any other language�

When you think about it� it doesn�t make any sense to change the value of an integer� in a

mathematical sense� For example� what would it mean to change the integer ��s value to be � It

wouldn�t mean anything sensible� for sure� � is a unique� abstract mathematical object that doesn�t

have any state that can be changed	� is �� and behaves like �� forever�

What�s going on in conventional programming languages is not really changing the value of an

integer	it�s replacing one �copy of an integer value with �a copy of another� That�s because most

programming languages have both pointer semantics �for pointer variables and value semantics

�for nonpointer variables� like integers� You make multiple copies of values� and then clobber the

copies when you perform an assignment�

In Scheme� we don�t need to clobber the value of an integer� because we get the e�ect we want

by replacing pointers with other pointers� An integer in Scheme is a unique entity� just as it is in

mathematics� We don�t have multiple copies of a particular number� just multiple references to it�

�Actually� Scheme�s treatment of numbers is not quite this simple and pretty� for e�ciency reasons

I�ll explain later� but it�s close�

As we�ll see later� an implementation is free to optimize away these pointers if it doesn�t a�ect

the programmer�s view of things	but when you�re trying to understand a program� you should

always think of values as pointers to objects�

The uniform use of pointers makes lots of things simpler� In C or Pascal� you have to be careful

whether you�re dealing with a raw value or a pointer� If you have a pointer and you need the actual

value� you have to explictly dereference the pointer �e�g�� with C�s pre
x operator �� or Pascal�s

post
x operator !� If you have a value and you need a pointer to it� you have to take its address

�e�g�� with C�s pre
x " operator� or Pascal�s pre
x operator !�

Chapter �� Introduction ��

In Scheme� none of that mess is necessary� User�de
ned routines pass pointers around� consis�

tently� and when they bottom out into prede
ned routines �like the built�in � procedure or set

special form those low�level built�in operations do any dereferencing that�s necessary�

�Of course� when traversing lists and the like� the programmer has to ask for pointers to be

dereferenced� but from the programmer�s point of view� that just means grabbing another pointer

value out of a
eld of an object you already have a pointer to�

It is sometimes said that languages like Scheme �and Lisp� Smalltalk� Ei�el� and Java �don�t

have pointers�� It�s at least as reasonable to say that the opposite is true	everything�s a pointer�

What they don�t have is a distinction between pointers and nonpointers that you have to worry

about��

������� Implementations Optimize Away Pointers

You might think that making every value a pointer to an object would be expensive� because

you�d have to have space for all of the pointers as well as the things they point to� and you�d have

to use extra instructions to access things via pointers�

Everything�s a pointer at the language level	i�e�� from the programmer�s point of view	but

a Scheme system doesn�t actually have to represent things the way they appear at the languages

level�

Most Scheme implementations optimize away a lot of pointers� For example� it�s ine�cient to

actually represent integer values as pointers to integer objects on the heap� Scheme implementations

therefore use tricks to represent integers without really using pointers� �Again� keep in mind that

this is just an implementation trick that�s hidden from the programmer� Integer values have the

semantics of pointers� even if they�re represented di�erently from other things�

Rather than putting integer values on the heap� and then passing around pointers to them� most

implementations put the actual integer bit pattern directly into variables	after all� a reasonable�

sized integer will
t in a machine word�

� This also has to do with what you mean by �pointer�� I use the word to mean pointers in the

sense of building pointer�linked data structures� �Scheme clearly has those� Some people use

�pointers� to mean addresses that are bit patterns you can manipulate directly	the way you

can in C� where you can �cast� �coerce a pointer to an integer and operate on the bits� Some

people use �pointer� synonymously with �address�� and call what Scheme has object references�

Chapter �� Introduction ��

A short value �like a normal integer stored directly into a variable is called an immediate value�

in contrast to pointers which are used to refer to objects indirectly�

The problem with putting integers or other short values into variables is that Scheme has to tell

them apart from each other� and from pointers which might have the same bit patterns�

The solution to this is tagging� The value in each variable actually has a few bits devoted to a

type tag which says what kind of thing it is	e�g�� whether it�s a pointer or not� The use of a few

bits for a tag slightly reduces the amount of storage available for the actual value� but as we�ll see

next� that usually isn�t a problem�

It might seem that storing integer bit patterns directly in variables would break the abstraction

that Scheme is supposed to present	the illusion that all values are pointers to objects on the

heap� That�s not so� though� because the language enforces restrictions that keep programmers

from seeing the di�erence�

In the case of numbers and a few other types� you can�t change the state of the object itself�

There�s no way to side�e�ect an integer object and make it behave di�erently� We say that integers

are immutable� i�e�� you can�t mutate �change them�

If integers were actually allocated on the heap and referred to via pointers� and if you could

change the integer�s value� then that change would be visible through other pointers to the integer�

�That doesn�t mean that a variable�s value can�t be one integer at one time� and another integer

at another	the variable�s value is really a pointer to an integer� not the integer itself� and you�re

really just replacing a pointer to one integer with a pointer to another integer�

������� Objects on the Heap

Most Scheme objects only have
elds that are general�purpose value cells	any
eld can hold

any Scheme value� whether it�s a tagged immediate value or a tagged pointer to another heap�

allocated object� �Of course� conceptually they�re all pointers� so the type of a
eld is just �pointer

to anything��

So� for example� a pair �also known in Lisp terminology as a �cons cell� is a heap�allocated

object with two
elds� Either
eld can hold any kind of value� such as a number� a text character�

a boolean� or a pointer to another heap object�

Chapter �� Introduction ��

The
rst
eld of a pair is called the car
eld� and the second
eld is called the cdr
eld� These

are among the dumbest names for anything in all of computer science� �They are just a historical

artifact of the
rst Lisp implementation and the machine it ran on�

Pairs can be created using the procedure cons� For example� to create a pair with the number

�� as the value of its car
eld� and the number �� as the value of its cdr
eld� you can write the

procedure call 	cons �� ����

The
elds of a pair are like variable bindings� in that they can hold any kind of Scheme value�

Both bindings and
elds are called value cells	i�e�� they�re places you can put any kind of value�

In most implementations� each heap�allocated object has a hidden �header�
eld that you� as

a Scheme programmer� are not supposed to know about� This extra
eld holds type information�

saying exactly what kind of heap allocated object it is� So� laid out in memory� the pair looks

something like this�

�������������

header� �PAIR�ID� �

�������������

car� ���������������

�������������

cdr� ���������������

�������������

In this case� the car
eld of the pair �cons cell holds the integer ��� and the cdr
eld holds the

integer ���

The values stored in the
elds of the pair are drawn as arrows� because they are pointers to the

numbers �� and ���

�The actual representation of these values might be a ���bit binary number with a two�bit tag

eld used to distinguish integers from real pointers� but you don�t have to worry about that�

Scheme provides a built�in procedure car to get the value of the car
eld of a pair� and set�car

to set that
eld�s value� Likewise there are functions cdr and set�cdr to get and set the cdr

eld�s values�

Chapter �� Introduction ��

Suppose we have a top�level variable binding for the variable foo� and its value is a pointer to

the above pair� We would draw that situation something like this�

�����������

����������� header� �PAIR� �

foo � �������������������������������

����������� car� �������������

�����������

cdr� �������������

�����������

Most other objects in Scheme are represented similarly� For example� a vector �one�dimensional

array is typically represented as a linear array of value cells� which can hold any kind of value�

Even objects that aren�t actually represented like this can be thought of this way� since concep�

tually� everything�s on the heap and referred to via a pointer�

����� Scheme Reclaims Memory Automatically

In languages like C or Pascal� data objects may be allocated in several ways� �Recall that by

�objects� I just mean data objects like records� They may be allocated statically �as in the case of

global variables� or on an activation stack as part of a procedure activation record �as in the case

of local variables� or dynamically allocated on the heap at run time using an alloction routine like

malloc or new�

Scheme is simpler	all objects are allocated on the heap� and referred to via pointers� The

Scheme heap is garbage collected� meaning that the Scheme system automatically cleans up after

you� Every now and then� the system
gures out which objects aren�t in use anymore� and reclaims

their storage� �This determination is very conservative and safe	the collector will never take back

any object that your program holds a pointer to� or might reach via any path of pointer traversals�

Don�t be afraid that the collector will eat objects you still care about while you�re not looking�

The use of garbage collection supports the abstraction of inde�nite extent� That means that all

objects conceptually live forever� or at least as long as they might matter to the program	there�s

no concept �at the language level of reusing memory� From the point of view of a running program�

memory is in
nite	it can keep allocating objects inde
nitely� without ever reusing their space�

Chapter �� Introduction ��

Of course� this abstraction breaks down if there really isn�t enough memory for what you�re

trying to do� If you really try to create data structures that are bigger than the available memory�

you�ll run out� Garbage collection can�t give you memory you don�t have�

Some people think that garbage collection is expensive in time and�or space� While garbage

collection is not free� it is much cheaper than is generally believed� Some people have also had bad

experiences with systems that stop for signi
cant periods to collect garbage� but modern GC�s can

solve this problem� too� �If you�re interested in how e�cient and nondisruptive garbage collectors

are implemented� a good place to start is my GC survey paper� available from my research group�s

web site at http���www�cs�utexas�edu�users�oops�

����� Objects Have Types� Variables Don�t

If I use my
nger as a pointer� I can use it to point to all kinds of things	a computer� a painting�

a motorcycle� or any number of things� Variables in Scheme are like this� too�

������� Dynamic typing

In Scheme� all variables have the same type� �pointer to anything��

Scheme is dynamically typed� meaning that variables don�t have
xed types� but objects do� An

object carries its type around with it	an integer is an integer forever� but a variable may refer to

an integer at some times� and a string �or something else at other times� The language provides

type�checking at run time to ensure that you don�t perform the wrong operations on objects	if

you attempt to add two strings� for example� the system will detect the error and notify you�

Sometimes� people refer to languages like Scheme �and Lisp and Smalltalk as untyped� This

is very misleading� In a truly untyped language �like FORTH and most assembly languages� you

can interpret a value any way you want	as an integer� a pointer� or whatever� �You can also do

this in C� using unsafe casts� which is a source of many time�consuming bugs��

� An unsafe cast is one that the compiler doesn�t really understand� A safe cast is one that makes

sense to the compiler� such as converting an integer to a �oating point number� With unsafe

casts� you�re essentially telling the compiler �trust me�� and bypassing the type systems� This

is what happens when you cast a structure pointer to a void� or char� and later cast it back

to a structure pointer	you�re promising the compiler that the pointer will actually point to a

structure of the declared type� and it�s up to you to make sure that�s true�

Chapter �� Introduction ��

In dynamically typed systems� types are enforced at runtime� If you try to use the numeric

procedure � to add two lists together� for example� the system will detect the error and halt

gracefully	it won�t blithely assume you know what you�re doing and corrupt your data� You also

can�t misinterpret a nonpointer value as a pointer� and generate fatal segmentation violations that

kill your program�

You might think that dynamic typing is expensive� and it can be� But good Scheme compilers can

remove most of the overhead by inference at compile time� and most advanced implementations

also let you declare types in performance�critical places so that the compiler can generate code

similar to that for C or Pascal�

� I�ve left out some text from my course notes about tagging and immediate values �more

detailed��� put back in� maybe in an appendix �

��
This is the end of Hunk C

TIME TO TRY IT OUT

At this point
 you should go read Hunk D of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk D� which starts at Section ������ �Making Some Objects�� page ���

������ The Empty List �Hunk E

��
Hunk E starts here�
��

In Scheme� there is one null pointer value� called �the empty list�� which prints as 	�� �Later�

we�ll see why it�s written that way� and why it�s called �the empty list��

Conceptually� the empty list is a special object� and a null pointer is a pointer to this special

end�of�list object� You can ignore that fact and think of it as just a null pointer� because there�s

nothing interesting you can do with the object it points to�

Chapter �� Introduction ��

�In some implementations� the empty list object #	� is actually an object referred to via a

pointer� and null pointers are really pointers to it� In others� an empty list is an immediate value� a

specially tagged null pointer� At the level of the Scheme language� it doesn�t matter which way it�s

implemented in a particular Scheme system� All you can really do with the null pointer is compare

it against other pointers� to see if they�re null pointers� too�

The empty list object acts as a null pointer for any purpose	there�s only one kind of pointer

�pointer to anything� so there�s only one kind of null pointer �pointer to nothing�

Scheme provides a procedure� null� to check whether a value is �a pointer to the empty list�

i�e�� a null pointer� For example� 	null� foo� returns �t if the value of the variable foo is the

empty list� and �f otherwise�

You might be wondering why the null pointer object is called �the empty list�� I�ll explain that

later� Given the way lists are usually used in Scheme� it turns out to make perfect sense�

You can write the empty list as a literal in your programs as #	�� That is� the expression #	�

returns the empty list �null pointer� 	�� Later I�ll explain why you have to put the single quote

mark in front of the empty set of parentheses when writing the empty list as a literal�

��� Pairs and Lists

Scheme� like Lisp� has built�in procedures for dealing with a particularly �exible kind of list	a

list of pairs� whose cdr
elds hold pointers that string them together� and whose car
elds hold

the values� �That is� the cdr
elds act as �next� pointers� linking the pairs into a linear list�

����� cdr�linked lists

In Lisp and Scheme� you don�t typically string objects together into a list by giving each one a

�next�
eld that points right to the next object� Instead� you create a list of pairs whose car
elds

hold the pointers to the objects� and whose cdr
elds link the pairs together into a �spine��

There isn�t really a special list data type in Scheme� A list is really just a sequence of pairs�

ending with a null pointer� A null pointer is a list� too	it�s a sequence of zero pairs ending in a

null pointer� We sometimes talk about �the car of a list� or �the cdr of a list�� but what that really

means is �the car of the
rst pair in the list� and �the cdr of the
rst pair in the list��

Chapter �� Introduction ��

Suppose we have a variable foo holding a pointer to a list containing the integers ��� ��� and

�� Here�s one way of drawing this situation�

����������� ����������� �����������

����������� � �PAIR� � � �PAIR� � � �PAIR� �

foo � ��������������������� ��������������� ���������������

����������� � ��� � � ��� � � ��

����������� � ����������� � �����������

� ���������� � �������� � � �

����������� ����������� �����������

This shows something pretty close to the way things are likely to actually represented in memory�

But there�s usually a better way of drawing the list� which emphasizes the fact that number values

are conceptually pointers to numbers� and which corresponds to the way we usually think about

lists�

����� ��������� ��������� ���������

bar � �������� � � ���������� � � ���������� � � � �

����� ��������� ��������� ���������

� � �

$�� $�� $��

�� �� �

I�ve left o� the header
elds of objects� which are not visible to a Scheme programmer�

I�ve also drawn pairs in a special way� with the car and cdr
elds side�by�side� I�ve drawn the

integers outside the pairs� with pointers to them from the car
elds� because that�s the way things

look at the language level�

This emphasizes the fact that lists are generally separate things from the items �in� the list�

A major advantage of this is that you don�t have to modify an object to put it on a list	an

object can easily be in many lists at once� because a list is really just a spine of pairs that holds

pointers to the items in the list� This is much cleaner than the way people are typically taught

to create simple lists in most beginning programming classes� �It�s also very natural in a language

where all values are pointers	of course lists of objects are really just lists of pointers to objects�

Chapter �� Introduction ��

For example� you can have two lists with the same elements� or some of the same elements� but

perhaps in a di�erent order�

����� ��������� ��������� ���������

bar � �������� � � ���������� � � ���������� � � � �

����� ��������� ��������� ���������

� � �

$�� $�� $��

�� �� �

��$ ��$

� �

����� ��������� ���������

baz � �������� � � ������������������������� � � � �

����� ��������� ���������

Here I�ve drawn two lists� bar and baz	that is� lists that are the values of the variables bar

and baz� bar holds the elements ��� ��� and �� while baz just holds the elements �� and ��

Since these two lists are really just made up of pairs� and they�re di�erent pairs� we can modify

one list without modifying the other� and without modifying the objects �in� the lists� For example�

we can reverse the order of one of the lists without a�ecting the other�

�We also don�t have to create a special kind of list node that has two next
elds� so that

something can be in two lists at a time� We can just have two separate lists of pairs� or three or

four�

Scheme has a standard way of writing a textual representation of a list� Given the pictured

situation� evaluating the expression 	display bar� will print 	�� �� ��� Evaluating the expression

	display baz� will print 	�� ��� Notice that Scheme just writes out a pair of parentheses around

the items in the list	it doesn�t represent the individual pairs� but just their car values�

Dynamic typing also helps make lists useful� A list of pairs can hold any type of object� or even

a mixed bag of di�erent types of objects� So� for example� a pair list can be a list of integers� a list

of lists� a list of text characters� or a list of any of the kinds of objects we haven�t gotten to yet�

It can also be a mixed list of integers� other lists� and whatnot� A few list routines can therefore

be useful in a variety of situations	a single list search routine can search any kind of list for a

particular target object� for example�

Chapter �� Introduction ��

This picture shows two variable bindings� for the variables bar and foo� bar�s binding holds a

list 	�� �� ��� while foo�s holds a list 	�� �� ��� We say that these lists share structure� i�e�� part

of one list is also part of the other�

��������� �

����������� � �PAIR� �

bar � ���������������������

����������� � ���

�����������

� ��������

����������� $

$

����������� $ ����������� �����������

����������� � �PAIR� � $ � �PAIR� � � �PAIR� �

foo � ��������������������� ��������������� ���������������

����������� � ��� � � ��� � � ��

����������� � ����������� � �����������

� ���������� � �������� � � �

����������� ����������� �����������

This picture may correspond well to how things are represented in memory� but it�s a little

confusing�

The more common way of drawing this data structure is

����� ���������

bar � �������� � � ����������

����� ��������� �

� �

$�� �

�� �

$��

����� ��������� ��������� ���������

foo � �������� � � ���������� � � ���������� � � � �

����� ��������� ��������� ���������

� � �

$�� $�� $��

�� �� �

Chapter �� Introduction ��

Again� this emphasizes the idea that everything�s a pointer	conceptually� the pairs hold pointers

to the integers�

Generally� pairs are drawn as pairs of little boxes� and they�re typically drawn with the boxes

side by side	that�s just handy because pairs are often used for linear lists� which you want to

display horizontally	it�s easy to draw the spine of the list horizontally if the cdr
eld �used as a

�next� pointer is on the right� �Of course� when there�s shared structure� as in the above picture�

you can�t draw all cdrs going directly to the right�

We leave o� the headers because they�re a low�level detail anyway� because they�re a hidden

implementation detail that may vary from system to system� and because Scheme programmers

immediately recognize this kind of two�box drawing of a pair�

In the above picture� we can talk about �the car of foo�� which really means the value in the

car
eld of the pair pointed at by the value stored in �the binding of foo� It�s �a pointer to ���

We would often call this �the car of the list foo��

Notice that the cdr of foo is also a list� and it�s the same list as the cdr of bar	the cdrs of the

rst pairs in each list point to the same list�

We can say that the cdr of foo and the cdr of bar �are eq��� because the expression 	eq� 	cdr

foo� 	cdr bar�� returns true� That is� 	car foo� and 	cdr foo� return �pointers to exactly the

same object�

����� Lists and Quoting

Scheme allows you to write lists as literals using quoting� Just as you can write a literal boolean

or number in your program� you can write a literal list if you use the special form quote�

For example� the expression 	quote 	� � ��� returns a pointer to a list 	� � ��� i�e�� a sequence

of cdr linked pairs whose car values are �pointers to to �� �� and ��

You can use quote expressions as subexpressions of other expressions� because they just return

pointer values like anything else�

For example� the expression 	define foo 	quote 	� � ���� de
nes �and binds a variable foo�

and initializes its binding with �a pointer to a three�element list�

Chapter �� Introduction ��

We can draw the resulting situation this way�

����� ��������� ��������� ���������

foo � �������� � � ���������� � � ���������� � � � �

����� ��������� ��������� ���������

� � �

$�� $�� $��

� � �

quote takes exactly one argument� and returns a data structure whose printed representation is

the same as what you typed in as the argument to quote� Scheme does not evaluate the argument

to quote as an expression	it just gives you a pointer to a data structure�

Note that quote does not generally construct a character string	it constructs a data structure

that may be a list or tree or even an array� It�s a very general quoting facility� much more powerful

than the double quotes around character strings� which only construct string objects�

Scheme provides a cleaner way of writing quoted expressions� using the special single�quote

character #� Rather than writing out 	quote some�expression�� you can just precede the quoted

expression with the single�quote character� For example� we can write the same de
nition of foo as

	define foo #	� � ���� You don�t need a closing quote� because of Scheme�s parenthesized pre
x

syntax	it can
gure out where the quoted data structure ends�

����� Where the Empty List Got its Name

Now that you understand Scheme lists and simple quoting� I can explain why the null pointer

is called �the empty list�� and written #	��

Consider a list foo of three elements�

	define foo #	� � ���

The cdr of that list is a list 	� ��� We could write a literal list like that as #	� ��

The cdr of that list is a one�element list� 	��� We could write a literal list like that as #	���

Chapter �� Introduction ��

The cdr of that list is a zero�element list� 	�� that is� it�s the empty list� We could write it in

quoted form as #	��

Given the way that Scheme lists work� a list of zero items is the same thing as a null pointer�

and it�s natural to for Scheme to print it as a list with zero elements� 	�	and for you to write it

as a literal with a single quote� #	��

��
This is the end of Hunk E�

TIME TO TRY IT OUT

At this point
 you should go read Hunk F of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk F� which starts at Section ������ �Lists�� page ����

� Maybe I should introduce strings and symbols here� moving some material from the tutorial

chapter here and possibly expanding the tutorial with more examples� �

��� Type and Equality Predicates
Hunk G�

��
Hunk G starts here�
��

Since a pointer can point to any kind of thing� it�s often good to know what kind of thing it

does point to� For example� you might have a mixed list of di�erent kinds of things� and want to

go through the list� doing a di�erent operation for each kind of object you encounter� For this�

Scheme provides type predicates� which are procedures which test to see whether the pointed�to

object is of a particular type�

You also often want to know whether two values refer to the same object� or to data structures

with the same structure� For this� Scheme provides equality predicates�

These procedures are called �predicates� because they test whether a property is true of a value�

and return a yes�or�no answer	that is� the boolean �t or the boolean �f� �This is like a �predicate�

in formal logic� which is a kind of statement with a �truth value� that depends on its arguments�

Chapter �� Introduction ��

The names of predicates generally end with a question mark� to signify that they return a

boolean� When you write your own programs� it�s good style to end the names of boolean�valued

�true�false functions with a question mark�

�An exception to this rule is the standard numeric comparison predicates like �� �� and �� By

the rule� they should have question marks after their names� but they�re used very frequently and

people generally recognize that they�re predicates� We don�t bother with question marks in their

names� because it would clutter up arithmetic expressions�

��	�� Type Predicates

Scheme provides built�in procedures to test whether values refer to objects of particular types�

If you want to know whether the value of variable x is �a pointer to pair� you can use the predicate

pair�� like this� 	pair� x��

Likewise� if you want to know if something is a number� you can use the predicate number�� If

you want to know whether a value is an integer� and not just some kind of number� you can use

integer��

Several other type predicates are provided� for other data types we�ll discuss later� including

string�� character�� vector�� and port��

��	�� Equality Predicates

Equality predicates tell whether one value is �the same as� another� There are actually several

important senses of �the same as�� so Scheme provides four equality predicates�

Sometimes you want to know whether two data structures are structurally the same� with the

same values in the same places� For example� you may want to know whether a list has the

same structure and elements as another list� For this� you can use equal�� which does a deep�

element�by�element structural comparison�

For example 	equal� #	� � �� #	� � ��� returns �t� because the arguments are both lists con�

taining �� �� �� in that order� equal� does a deep traversal of the data structure� so you can hand

it nested lists and other fairly complicated data structures as well� �Don�t hand it structures with

directed cycles of pointers� though� because it may loop forever without
nding the end�

Chapter �� Introduction ��

equal� works to compare simple things� too� For example� 	equal� �� ��� returns �t� and

	equal� �t ��� returns �f� �Note that equal� can be used to compare things that may or may

not be of the same type� but if they�re not� the answer will always be �f� Objects of di�erent types

are never equal��

Often you don�t want to structurally compare two whole data structures	you just want to know

if they�re the exact same object� For example� given two pointers to lists� you may want to know

if they�re pointers to the very same list� not just two lists with the same elements�

For this� you use eq�� eq� compares two values to see if they refer to the same object� Since

all values in Scheme are �conceptually pointers� this is just a pointer comparison� so eq� is always

fast�

�You might think that tagged immediate representations would require eq� to be slower than a

simple pointer comparision� because it would have to check whether things were really pointers� This

isn�t actually true	eq� just compares the bit patterns without worrying whether they represent

pointers or immediates�

Equality tests for numbers are treated specially� When comparing two values that are supposed

to be numbers� � is the appropriate predicate� Using � has the advantage that using it on non�

numbers is an error� and Scheme will complain when it happens� If you make a mistake and have a

non�number where you intend to have a number� this will often show you the problem� �You could

also use equal�� but it won�t signal an error when applied to non�numbers� and may be a little bit

slower�

There is another equality predicate� eqv�� which does numeric comparisons on numbers �like ��

and identity comparisons �like eq� on anything else�

��
This is the end of Hunk G

TIME TO TRY IT OUT

At this point
 you should go read Hunk H of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk H� which starts at Section ��� �Using Predicates�� page ����

Chapter �� Introduction ��

��	�� Choosing Equality Predicates �Hunk I

��
Hunk I starts here�
��

The reason that the � and eqv� predicates are needed is that the numeric system of Scheme is

not quite as clean as it could be� for e�ciency reasons�

Ideally� there would be exactly one copy of any numeric value� and all occurrences of that value

would really be pointers to the same unique object� Then you could use eq� to compare numbers

for identity� just as you can for other kinds of values� �For example� there would be just one �oating�

point number with the value �������� and any computation that returned that �oating�point value

would return a pointer to that unique object� �	eq� ������% ������%� would return �t�

Unfortunately� for numbers it would be too expensive to do this	it would require keeping a

table of all of the numbers in the system� and probing that table to eliminate duplicate copies of

the same values� As a concession to e�ciency� Scheme allows multiple copies of the same number�

and the � and eqv� predicates mask this wart in the language	they perform numeric comparisons

when faced with numbers� so that you don�t have to worry about whether two numbers with the

same value are literally the same object�

eqv� thus tests whether two values are �equivalent�� when two objects with the same numeric

value are treated as �the same�� like �� but all other objects are distinguished by their object

identity� like eq�� In general�

� eq� is useful for fast identity �same object comparisons of non�numbers�

� � performs numeric comparisons on numbers�

� eqv� is like eq�� but treats copies of the same number as though they were the same object�

and

� equal� performs a �deep� comparison of the structure of data structures� �It uses eqv� for

components that are numbers�

��� Quoting and Literals

Programs often need to refer to literal data values	data that you type directly into the program�

In many languages� the only literals are fairly simple values like integers and strings� In Scheme�

Chapter �� Introduction ��

you can use simple literals or complicated ones that represent �pointers to data structures like

nested lists� Earlier� I showed how using quoting to create list literals�

You�ve probably noticed that the syntax of Scheme code and the textual representation of

Scheme data are very similar� So� for example� 	min � �� is a combination if it�s viewed as code�

but it�s also the standard textual representation of a list containing the symbol min and the integers

� and ��

�A symbol is a data object that�s sort of like a string� but with some special properties� which

will be explained in the next chapter�

The resemblance between code and data is no accident� and it can be very convenient� as later

examples will show� It can be confusing� too� however� so it�s important to know when you�re

looking at a piece of code and when you�re looking at a piece of data�

The
rst thing to understand is quoting� In Scheme� the expression 	min � �� is a procedure

call to min with the arguments � and ��

As I explained earlier� we can quote it by wrapping it in the special form 	quote����� however�

and get a literal list 	min � ���

For example� the de
nition

	define foo 	quote 	min � ����

de
nes and binds foo� initializing the binding with �a pointer to the list 	min � ���

We can draw this situation this way�

����� ��������� ��������� ���������

foo � �������� � � ���������� � � ���������� � � � �

����� ��������� ��������� ���������

� � �

$�� $�� $��

min � �

Of course� as I explained earlier� we can use # as a euphemism for 	quote ��� �

Chapter �� Introduction ��

We can de
ne very complicated literals this way� if we want to� Here�s a procedure that returns

a nested list of nested lists of integers and booleans and symbols�

	define 	fubar�
#			� two �f� 	�t � four��
		five �f �� 	seven & �t��
		�f % ���� 		�� �� �f����

that�s a pretty useless procedure� but it�s very convenient to just be able to type in printed

representations of nested data structures and have Scheme construct them automatically for you�

In most languages you�d have to do some fairly tedious hacking to construct a list like that� As we�ll

see in a later chapter� Scheme also supports quasiquotation� which lets you construct mostly�literal

data structures� and create customized variations on them easily� quasiquotation will be discussed

a later chapter�

����� Simple Literals and Self�Evaluation

You might have noticed by now that we�ve already been using literals a lot in our examples	

numeric literals and boolean literals� Why didn�t we have to quote them to keep Scheme from

trying to evaluate them like other expressions� Because Scheme has a special rule� which is that

the value of a number or boolean is that number or boolean� For these data types� the result of

attempting to evaluate it is the same as what you started with� So the value of � is �� and the

value of �f is �f� �This also works for a few other types� such as characters and character strings�

Scheme lets you type in the text representation of a value as an expression� and by convention the

value of that expression is the value you typed the printed representation of� Such an expression is

called self�evaluating� because it is evaluated to itself�

What�s the deep meaning of this rule� There isn�t any� It�s just to keep you from having to

type a lot of quotes to use simple literals� Notice that that means that you can quote a number

or boolean if you want� and it doesn�t make any di�erence� The expression #� means �literally the

number ��� but since Scheme de
nes the value of a number to be itself� the value of plain � is ��

too�

Likewise� the value of #�f or 	quote �f is the same as �f	they�re all pointers to the false

object� You can write a string literal #�foo� as �foo�� In either case� the value of the expression

is a pointer to a string object with the character sequence f o o�

Minor warning� don�t add extra quotes inside expressions that are already quoted� #	foo ��

baz� is not the same thing as #	#foo #�� #baz�� One quote for a whole literal expression is enough�

Chapter �� Introduction ��

and extra quotes inside quotes do something that will seem surprising until you understand how

quoting really works�

Expression evaluation in Scheme is simple� for the most part� but you must remember the rules

for the special forms �which don�t always evaluate their arguments and self�evaluation� Later�

I�ll show how an interpreter implements self�evaluation by analyzing expressions before evaluating

them� Still later� I�ll show how a compiler can do the same work at compile time� so that using

literals doesn�t cost any evaluation overhead at run time�

��	 Local Variables and Lexical Scope

Scheme is a block�structured language with nested scopes� You can declare local variables whose

scope is a block of code� and blocks can have blocks inside them with their own local variables�

Scheme uses a lexical scope rule� �We can also say that Scheme is statically scoped� rather than

dynamically scoped� like some old Lisps� When you see a variable name in the code� you can tell

what variable it refers just to by looking at the source code for the program� A program consists

of possibly nested blocks of code� and the meaning of the name is determined by which variable

binding constructs it�s used inside�

����� let

You can create code blocks that have local variables using the let special form�

You�ve seen local binding environments in other languages before� In C or Pascal you�ve probably

seen blocks with local variables of their own� e�g�� in C�

���

� int x � ���

int y � ���

foo	x
y��

�

���

Here we�ve got a block �inside curly braces where local variables named x and y are visible�

�The same thing can be done with begin���end blocks in Pascal�

Chapter �� Introduction ��

When we enter the block� storage is allocated for the local variables� and the storage is initialized

with the appropriate initial values� We say that the variables are bound when we enter the block	

the names x and y refer to something� namely the storage allocated for them� �In C� the storage

for local variables may be allocated on an activation stack�

This is a simple but important idea	when you enter a scope� you �bind� a name to storage�

creating an association �naming between a name and a place you can put a value� �In later

chapters� we�ll see how interpreters and compilers keep track of the association between names and

storage�

Sometimes� we refer to the storage allocated for a variable as �its binding�� but really that�s a

shorthand for �the storage named by the variable�� or �the storage that the variable is bound to��

Inside the block� all references to the variables x and y refer to these new local variable bindings�

When execution reaches the end of the block� these variable bindings cease to exist and references

to x or y will again refer to whatever they did outside the block �perhaps global variables� or block

variables of some intermediate�level block� or nothing at all�

In this example� all that happens inside the block is a call to the procedure foo� using the values

of the block variables� i�e�� �� and ��� In C or Pascal� these temporary variables might be allocated

by growing the stack when the block is entered� and shrinking it again when the block is exited�

In Scheme� things are pretty similar� Blocks can be created with let expressions� like so�

���

	let 		x ���

	y ����

	foo x y��

���

The
rst part of the let is the variable binding clause� which in this case two subclauses� 	x

��� and 	y ���� This says that the let will create a variable named x whose initial value is ���

and another variable y whose initial value is ��� A let�s variable binding clause can contain any

number of clauses� creating any number of let variables� Each subclause is very much like the

name and initial value parts of a define form�

The rest of the let is a sequence of expressions� called the let body� The expressions are simply

evaluated in order� and the value of the last expression is returned as the value of the whole let

Chapter �� Introduction ��

expression� �The fact that this value is returned is very handy� and will be important in examples

we use later�

A let may only bind one variable� but it still needs parentheses around the whole variable

binding clause� as well as around the �one subclause for a particular binding� For example�

���

	let 		x ����

	foo x��

���

�Don�t forget the �extra� parentheses around the one variable binding clause	they�re not really

extra� because they�re what tells Scheme where the variable binding clause starts and stops� In this

case� before and after the subclause that de
nes the one variable�

In Scheme� you can use local variables pretty much the way you do in most languages� When

you enter a let expression� the let variables will be bound and initialized with values� When you

exit the let expression� those bindings will disappear�

You can also use local variables di�erently� however� as we�ll explain in later chapters� In general�

the bindings for Scheme variables aren�t allocated on an activation stack� but on the heap� This

lets you keep bindings around after the procedure that creates them returns� which will turn out

to be useful�

�You might think that this is ine�cient� and it could be� but good Scheme compilers can almost

always determine that it�s not really necessary to put most variables on the heap� and avoid the cost

of heap�allocating them� As with good compilers for most languages� most variables are actually

in registers when it matters� so that the generated code is fast�

������� Indenting let Expressions

In general� we indent let expressions in a way that shows the block structure of the program�

The binding forms �variable names and initial values are lined up vertically after the keyword let�

and the body expressions are indented a few characters and lined up vertically� like so�

Chapter �� Introduction ��

	let 		x ��� � bindings of x

	y ���� � and y

	foo x�

	let 		a 	bar�� � bindings of a

	b 	baz��� � and b

	quux x a�

	quux y b��

	baz��

Notice that the binding forms of each let are lined up vertically� and the body expressions are

not indented as far� This is important for making it obvious where the binding forms stop and

the body expressions start� �In this example� the body of the outer let consists of a call to foo�

another let� and a call to baz� The body of the inner let consists of two calls to quux�

����� Lexical Scope

If nested lets de
ne variables by the same name� then the uses of that name in the body of the

inner let will refer to the bindings created by the inner let�

Consider the following code fragment�

	let 		x ��� � outer binding of x

	a ���� � binding of a

	foo x�

	let 		x 	bar�� � inner binding of x

	b 	baz x x��� � binding of b

	quux x a�

	quux y b��

	baz x a� � refers to outer x 	and a�

	baz x b�� � illegal�

When control enters the outer let� the inital values for the variables are computed� In this case�

that�s just the literal values �� and ��� Then storage is allocated for the variables� and initialized

with those values� Once that�s done� the meaning of the names x and a changes	they now refer

to the new storage for �bindings of the let variables x and a	and then the body expressions are

evaluated�

Chapter �� Introduction ��

Similarly� when control enters the inner let� the inital values are computed by the calls to bar

and baz� and then storage for x and b is allocated and initialized with those values� Then the

meanings of the names x and b change� to refer to the new storage �bindings of those variables�

�For example� the value of x when 	baz x x� is evaluated is still ��� because x still refers to the

outer x�

In this example� the meaning of the identi
er x changes when we enter the inner let� We say

that the inner let variable x shadows the outer one� within the body of the let� The outer x is no

longer visible� because the inner one is�

When we exit a let �after evaluating its body expressions� the bindings introduced by the let

�go out of scope�� i�e�� aren�t visible anymore� �For example� when we evaluate the expression

	baz x a� in the body of the outer let� x refers to the binding introduced by the outer let	the

x introduced by the inner let is no longer visible�

Likewise� in the example code fragment� the b in the last expression� 	baz x b�� does not refer

to the inner let�s binding of b� Unless there is a binding of b in some outer scope we haven�t shown

�such as a top�level binding� then this will be an error�

������� Binding Environments and Binding Contours

The set of all bindings that are visible at a given point during program execution is called a

binding environment� That is� a binding environment maps a set of names to the pieces of storage

they name�

A top�level binding environment is the mapping that the Scheme system maintains between

top�level variable names and the storage they�re bound to� This might be implemented as a hash

table�

With local variables� a simple ��at� table isn�t su�cient� Entering a let� for example� adds new

bindings to the environment that code is executing in	it makes the new variable bindings visible�

changing the mapping from names to storage�

We say that each binding contruct we execute introduces a new binding contour� We call it a

contour because it changes the �shape� of the environment�

You can think of a binding contour as being implemented by a new table that�s created when

you enter a let� or any other construct that binds variables� When Scheme looks for a binding of

Chapter �� Introduction ��

an identi
er� it looks
rst in this new table� then in the old table that represented the environment

outside the let� Since Scheme looks in the �inner� environment�s table
rst� it will always
nd the

innermost binding of any identi
er� such as x in the example above�

At any given point� the environment consists of all of the variable bindings that are visible� This

includes all of the bindings in the table for the innermost contour� and all of the bindings in the

table for the contours it�s nested inside� except those that are shadowed by inner bindings of the

same names�

������� Block Structure Diagrams for lets

We can make environments and contours clearer by drawing a block diagram showing where the

di�erent variables are visible�

	let 		x ��� � bindings of x

	a ���� � and a

��

� 	foo x� scope of outer x �

� 	let 		x 	bar�� and a �

� 	b 	baz x x��� �

� �� �

� � 	quux x a� scope of inner x � �

� � 	quux y b� and b � � �

� �� �

� 	baz x a� �

� 	baz x b� � �

��

�This kind of block diagram is the origin of the term �block structure��

Each box represents a contour� it shows where in the program each variable binding will be

visible�

We can interpret a block structure diagram by looking outward from an occurrence of a variable

name� and using the nearest enclosing box that corresponds to a binding of that name� Now we

can see that the
nal call 	baz x b� does not refer to the let variable b	it�s not inside the box

corresponding to that variable� We can also see that the occurrence of x in that expression refers

Chapter �� Introduction ��

to the outer x� The occurrence of x in the calls to quux refer to the inner x� because they�re inside

its box� and inner de
nitions shadow outer ones�

There�s something a little tricky to notice here� When we evaluate the initial value expressions

for the inner let� the inner bindings are not visible yet� x still refers to the outer binding of x� not

the inner one that we are about to create� Sometimes this is exactly what you want� but sometimes

it�s not� Because it isn�t always what you want� Scheme provides two variants of let� called let�

and letrec�

����� let�

let is useful for most local variables� but sometimes you want to create several local variables

in sequence� with each variable�s value available to compute the next variable�s value�

For example� it is common to �destructure� a data structure� extracting part of the structure�

then a part of that part� and so on� We could do this by simply nesting expressions that extract

parts� but then we don�t have understandable names for the intermediate results of the nested

expressions�

�In other cases� we may want to do more than one thing with the results of one of the nested

expressions� so we need to create a variable so that we can refer to it in more than one body

expression�

Consider the code fragment�

	let 		a�structure 	some�procedure���

	let 		a�substructure 	get�some�subpart a�structure���

	let 		a�subsubstructure 	get�another�subpart a�substructure���

	foo a�substructure����

Scheme provides a convenient syntax for this sort of nested let� can be written as a single let�

	let� 		a�structure 	some�procedure��

	a�substructure 	get�some�subpart a�structure��

	a�subsubstructure 	get�another�subpart a�substructure���

	foo a�substructure����

Chapter �� Introduction ��

Notice that this wouldn�t work if we wrote it as a normal let that binds three variables� A

block structure diagram shows why�

	let 		a�structure 	some�procedure��

	a�substructure 	get�some�subpart a�structure��

	a�subsubstructure 	get�another�subpart a�substructure���

���

� 	foo a�substructure� � scope of all three variables � ���

���

Now we see that all of the initial value expressions for the let variables are outside the scope of

any of the variables� a�substructure and a�substructurewill not refer to the bindings introduced

by this let� but to whatever bindings �if any are visible outside the let�

With let�� it�s di�erent�

	let 		a�structure 	some�procedure��

���

� 	a�substructure 	get�some�subpart a�structure�� �

�� �

� 	a�subsubstructure 	get�another�subpart a�substructure��� � �

��� � �

� 	foo a�subsubtructure� � � � ���

���

Each initial value clause is in the scope of the previous variable in the let�� From the nesting

of the boxes� we can see that bindings become visible one at a time� so that the value of a binding

can be used in computing the initial value of the next binding�

There�s another local binding construct in Scheme� letrec� which is used when creating mutually

recursive local procedures� I�ll discuss that later� when I describe how local procedures work in

Scheme�

��
This is the end of Hunk I

TIME TO TRY IT OUT

At this point
 you should go read Hunk J of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�

Chapter �� Introduction ��

��

Go to Hunk J� which starts at Section ��� �Local Variables�� page ����

��� Procedures
Hunk K�

��
Hunk K starts here�
��

Scheme procedures are �
rst class�� meaning that they�re objects in the language� They can

be anonymous� meaning that you can have pointers to procedures that don�t have printed names�

They can be higher�order� meaning that procedures can operate on procedures�

����� Procedures are First Class

In Scheme� procedures are data objects	you can have a pointer to a procedure and do the same

things you can do with any other Scheme value� Technically� we say that procedures are �rst class

objects in the language	you can pass a procedure value as an argument to a procedure� return

it as the value of a procedure call� store it in a variable or a
eld of another object� A procedure

pointer is just a value that you can pass around like any other value� like a pair or a boolean�

Procedures are special� of course� because they�re the only kind of object that supports the

procedure call operation�

In Scheme terminology� a procedure call expression is called a combination� Evaluation of a

combination includes evaluation of the argument expressions and application of the procedure to

the arguments� i�e�� actually calling it with ��applying it to� those values�

An unusual feature of Scheme is that it uses a uni�ed namespace� which means that there�s

only one kind of name for both normal variables and procedures	in fact� procedure names are

really just variable names� and there�s only one kind of variable� A named procedure is really just

a
rst�class procedure object that happens to be referenced from a variable�

When you de
ne a procedure as we did above for the min example� you�re really doing three

things� creating a procedure� creating a normal variable �named min� and initializing the variable

with a pointer to the procedure�

Chapter �� Introduction ��

�This means that you can�t have both a procedure variable and a �normal� data variable by the

same name in the same scope	there�s really only one kind of variable� so you can only have one

binding in a given scope�

When you de
ne a procedure as we did above for the min example� Don�t let the special syntax

for procedure de
nitions fool you	a procedure name is really just the name of a variable that

happens to hold a procedure value� You can use any variable that way� by storing a procedure

value in it� You can also assign a new procedure value to a variable� and then use it to name the

new procedure�

For example� if you�ve de
ned min as above� you can change the value in the binding of min by

saying 	set min ��� That assignment expression will look up the value of the variable �� which is

the addition procedure� and assign that into the variable min�

Then when you call min as before� it will do addition instead� because it will call the same

procedure as �� For example 	min � ��� will return ��� not ��

You could also change the meaning of �� just by assigning a new value to the �the binding of

the variable �� This is probably a bad idea unless you really have a good reason� because if the

new procedure doesn�t do addition� any code that calls � will return di�erent answers�

It is important to understand how procedure calls actually work in Scheme� which is actually

very simple� Consider the combination �procedure call expression 	� a b�� What this really means

is

�� look up the value of �the current binding of the variable �� which we assume is a procedure�

�� look up the values of �the current bindings of the variables a and b� and

�� apply the procedure to those values� i�e�� call it with those values as arguments�

The
rst subexpression of the combination is evaluated in just the same way as the others�

although the result is used di�erently� The
rst subexpression is just a subexpression that should

return a procedure value� and the others give the arguments to pass to it�

This won�t work if the
rst subexpression doesn�t evaluate to a procedure value� For example�

you can change the meaning of � with an assignment expression 	set � ��� Then if you attempt

to call � with the combination 	� � �� you�ll get an error� Scheme will say something like �ERROR�

Attempt to apply non�procedure��

Chapter �� Introduction ��

The fact that the
rst �operator subexpression is evaluated just like any other expression can

be very useful� Rather than giving the name of a particular procedure to call� we can use any

expression whose result is a procedure� For example� we might have a table of procedures to use

in di�erent kinds of situations� and search that table for the procedure to call at a particular time�

		look�up�appropriate�procedure key� foo bar�

Here we call the procedure look�up�appropriate�procedure with the argument key to get a

procedure� and then apply it to the values of foo and bar�

One warning about combinations� the Scheme language doesn�t specify the order in which the

subexpressions of a combination are evaluated� Don�t write code that depends on whether the

operator expression is evaluated
rst� or on the order of evaluation of the argument expressions�

You might wonder what�s so special about
rst�class procedures� since some other languages

�like C let you pass around pointers to procedures� and call them via those pointers� Scheme�s

procedures work like Pascal�s if you use them for the kinds of things Pascal allows� but also lets

you use them in more general ways that I�ll explain later�

����� Higher�Order Procedures

Scheme is designed to make it easy to use higher�order procedures� i�e�� procedures that may

take other procedures as arguments or return them as values�

For example� you can easily write a sort procedure that takes a comparison procedure as an

argument� and uses whatever procedure you hand it to determine the sorted order�

To sort a list in ascending order� you can then call sort with �a pointer to the procedure �

��less than� as its argument� like this�

	sort � #	� � ���

and you�ll get back a sorted list 	� � ���

Note that the expression � here is just a variable reference� We�re fetching the value of the

variable � and passing it to sort as an argument�

Chapter �� Introduction ��

If you�d rather sort the list in descending order� you can pass it the procedure � ��greater than�

instead�

	sort � #	� � ���

and get back a sorted list 	� � ���

The same procedure can be used with lists of di�erent kinds of objects� as long as you supply a

comparison operator that does what you want�

For example� to sort a list of character strings into alphabetic order� you can pass sort a pointer

to the standard string�comparison procedure string���

	sort string�� #	�foo� �bar� �baz� �quux���

and get back a list 	�bar� �baz� �foo� �quux���

� give map example here� �

����� Anonymous Procedures and lambda

Scheme has a special form that is very special� called lambda� It creates a
rst�class procedure

and returns a pointer to it�

For example� you can create a procedure that doubles its argument by evaluating the expression

	lambda 	x� 	� x x��� The second subform of the expression is a list of formal arguments� and

the third subform is the body of the procedure�

lambda doesn�t give a name to the procedure it creates	it just returns a pointer to the procedure

object�

Actually� the procedure�de
ning variant of define is exactly equivalent to a variable�de
ning

define� with a lambda expression as its initial value form�

For example�

Chapter �� Introduction ��

	define 	double x�

	� x x��

is exactly equivalent to

	define double 	lambda 	x�

	� x x���

In either case� we�re creating a one�argument procedure� and we�re also de
ning and binding a

variable named double� and initializing its storage with a pointer to the procedure�

The procedure�de
ning syntax for define is just syntactic sugar	there�s nothing you can do

with it that you can�t do with local variables and lambda� It�s just a more convenient notation for

the same thing�

��
This is the end of Hunk K�

TIME TO TRY IT OUT

At this point
 you should go read Hunk L of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk L� which starts at Section ����� �Using Procedures�� page ����

����	 lambda and Lexical Scope �Hunk M

��
Hunk M starts here�
��

lambda creates a procedure that will execute in the scope where the lambda expression was

evaluated�

Except for local variables of the procedure itself� including its arguments� names in the body

of the procedure refer to whatever they refer to at the point where the procedure is created by

lambda�

Chapter �� Introduction ��

This is necessary for preserving lexical scope	the meanings of variable names must be obvious

at the point where the procedure is de
ned�

Local variables created by the procedure have the usual scope rule within the body� �Argument

variables are just a special kind of local variable� which get their initial values from the caller� Other

variables are called free variables	that is variables de
ned outside the procedure� but referred to

from inside it�

We say that lambda creates a closure� a procedure whose free variable references are �
xed� at

the time the procedure is created� Whenever the procedure references a free variable� it will will

refer to the bindings of those variables in the environment where the procedure was created�

Consider the following small program

	define foo ��

	define 	baz�

foo�

	define 	quux�

	let 		foo ���

	baz���

	quux�

When quux is called� it will bind its local variable foo and then call baz� When baz is called

from quux� however� it will still see the top level binding of foo� whose value is �� The result of the

call to baz will be �� and that value will be returned as the value of the call to quux as well�

There is a very good reason for this� and it�s the rule used by most programming languages� It

is important that the meaning of a procedure be
xed where it is de
ned� rather than having the

meaning depend on where it is called from� You want to be able to look at the code� and see that

the name foo refers to particular variable� namely the one that�s visible there� at the top level�

You don�t want to have to worry about the meaning of the procedure baz changing� depending on

where it�s called from�

A block structure diagram may make this clearer� I�ll just show the part for the procedure baz�

Chapter �� Introduction ��

	define 	quux�

	let 		foo ���

�����������������������������

� 	baz� scope of foo � ��

�����������������������������

This emphasizes the fact that the local foo really is local� The de
nition of baz is not inside

the box� so it can�t ever see foo�s local variable foo� �The fact that baz is called from inside the

box doesn�t matter�

Conceptually� the procedure baz returns to the environment where it was created before it

executes� and even before it binds its arguments�

In early Lisps� a di�erent rule was used� called dynamic scope� In those Lisps� the call to baz

would see the most recent binding of foo� In this case� it would see the binding created by quux

just before the call to foo� This led to very inscrutable bugs� because a procedure would work

sometimes� and not others� depending on the names of variables bound in other procedures�

�Dynamic scoping is generally considered to have been a big mistake� and was
xed in recent

versions of Lisp� such as Common Lisp� which were in�uenced by Scheme�

����� Local De�nitions

Scheme lets you de
ne local procedures� scoped inside other procedures or blocks with local

variables� This lets you �hide� procedures that only make sense in a certain context� so that they

can only be called in that context�

You can de
ne local procedures using let and lambda� like this�

	define 	quadruple x�

	let 		double 	lambda 	x�

	� x x����

	double 	double x����

Here we�ve de
ned a procedure named quadruple� with a local variable named double� its value

is a procedure that will double its argument value� created with lambda�

Chapter �� Introduction ��

Notice that when we call double from inside the procedure quadruple� we call it by the name

double� which is really the name of a local variable� That�s okay� because there�s no di�erence

between variable names and procedure names	a call to a named procedure is always a lookup of

a variable value followed by a call to the procedure it points to�

Also notice that the inner procedure�s argument variable x shadows the outer procedure�s argu�

ment variable x� Inside the body of double� it refers to double�s argument� but outside it doesn�t�

�The code might be easier to read if we chose di�erent names for the two procedures� arguments�

but this is just for illustration�

As with a top�level de
nition� we can write a local de
nition using define instead of let� For

example� we could have written the above procedure as�

	define 	quadruple x�

	define 	double 	x�

	� x x����

	double 	double x����

A local define acts a lot like let with lambda� �Actually� it�s exactly like a letrec with lambda�

but we haven�t discussed letrec yet� we will later�

There�s a restriction on internal defines	they must be at the beginning of the procedure body

�or the beginning of another body� like a let body� before the normal executable expressions in

the body�

Local procedure de
nitions follow the normal lexical scope rule� like nested lets� For example�

in the above example� the formal argument x of double is local to the body of double	it�s a

di�erent variable x than the argument x of quadruple�

	define 	quadruple x�

	define 	double 	x�

����������������������������

� ���������� �

� � 	� x x����� �

� ���������� �

� 	double 	double x�� � ��

����������������������������

Chapter �� Introduction ��

Here the inner box is the scope of double�s argument x� and the outer one is the scope of the

variable double�

We could have used a di�erent name for the argument to the local procedure� and it wouldn�t

change the meaning of either procedure�

	define 	quadruple x�

	define 	double 	y� � local defn� of double

	� y y��� � body of local procedure

	double 	double x��� � body of quadruple

On the other hand� since there are no local bindings of �� � refers to whatever it refers to in

the context where quadruple is de
ned� Assuming that quadruple is a top�level procedure� not

a local procedure in some other scope� � refers to the top�level binding of �� �Remember that a

procedure name is really just a variable name� so the scope rules for variables apply to procedure

names too�

����� Recursive Local Procedures and letrec

Using let and lambda to de
ne local procedures will often work� but generally we use letrec

rather than let� because it supports recursive local procedures� �That�s why it�s called letrec	it

means let with recursive de
nitions�

Suppose we tried to use let and lambda to de
ne a recursive local procedure�

	define 	foo x�

	let 		local�proc 	lambda 	y�

���

	local�proc ���� � recursive call� No�

������

���

	local�proc x�

����

The problem with this example is that what appears to be a recursive call to local�proc from

inside local�proc actually isn�t� Remember that let computes the initial values of variables� then

initializes all of the variables� storage� and only then do any of the bindings become visible	when

we enter the body of the let� In the example above� that means that the local variable local�

Chapter �� Introduction ��

proc isn�t visible to the lambda expression� The procedure created by lambda will not see its

own name	the name local�proc in the body of the procedure will refer to whatever binding of

local�proc exists in the enclosing environment� if there is one�

A block structure diagram may make this clearer�

	define 	foo x�

	let 		local�proc 	lambda 	y�

����������������������������

� ��� scope �

� 	local�proc ���� of y �

� ��� � ���

����������������������������

��

� ��� scope of �

� 	local�proc x� local�proc �

� ��� � �

��

Unlike let� letrec makes new bindings visible before they�re initialized� Storage is allocated�

and the meanings of names are changed to refer to the new local variable bindings� and then the

initial values of those variables are computed and the variables are initialized�

For most purposes� this wouldn�t make any sense at all	why would you want variable bindings

to be visible before they have had their initial values installed� For local procedure de
nitions�

however� it makes perfect sense	we want to use lambda to create a procedure that can operate on

the variables later� when it�s called�

lambda creates a procedure that will start executing in the scope where the lambda expression

is evaluated� so we need to make the bindings visible before we evaluate the lambda expression�

If we use letrec in our example� instead of let� it works� The procedure local�proc can see

the variable local�proc� so it can call itself by its name�

The block structure diagram looks like this�

Chapter �� Introduction ��

	define 	foo x� �������������������������������������

	let 		local�proc � 	lambda 	y� �

� ���������������������������� �

� � ��� scope � �

� � 	local�proc ���� of y � �

� � ��� � ��� �

� ���������������������������� �

������������������ �

� ��� scope of �

� 	local�proc x� local�proc �

� ���� �

��

The recursive call to local�proc will work� because the call is inside the box that corresponds

to the scope of the variable local�proc�

letrec works for multiple mutually recursive local procedures� too� You can de
ne several local

procedures that can call each other� like this�

	define 	my�proc�

	letrec 		local�proc�� 	lambda 	�

���

	local�proc���

�����

	local�proc�� 	lambda 	�

���

	local�proc���

������

	local�proc����� � start off mutual recursion by calling local�proc��

A block structure diagram shows that each local procedure de
nition can see the bindings of

the other�s names�

Chapter �� Introduction ��

	define 	my�proc�

��

	letrec 	 � 	local�proc�� 	lambda 	� scope of local�proc�� �

� ��� and local�proc�� �

� 	local�proc��� �

� ����� �

� 	local�proc�� 	lambda 	� �

� ��� �

� 	local�proc��� �

���������� ������ �

� 	local�proc��� � ��

���

You can also de
ne plain variables while you�re at it� in the same letrec� but letrec is mostly

interesting for de
ning local procedures�

When the initial value of a letrec variable is not a procedure� you must be careful that the

expression does not depend on the values of any of the other letrec variables� Like let� the order

of initialization of the variables is unde
ned�

For example� the following is illegal�

	letrec 		x ��

	y 	� x x���

����

In this case� the attempt to compute 	� x x� may fail� because the value of x may not have

been computed yet� For this example� let� would do the job	the second initialization expression

needs to see the result of the
rst� but not vice versa�

	let� 		x ��

	y 	� x x���

����

Be sure you understand why this is illegal� but the lambda expressions in the earlier examples

are not� When we create recursive procedures using letrec and lambda� the lambda expressions

can be evaluated without actually using the values of the bindings they reference� We are creating

procedures that will use the values in the bindings when those procedures are called� but just

creating the procedure objects themselves doesn�t require the bindings to have values yet� It does

Chapter �� Introduction ��

require that the bindings exist� because each lambda expression creates a procedure that �captures�

the currently visible bindings	the procedure remembers what environment it was created in�

����� Multiple defines are like a letrec

Now that you understand letrec� I can explain what define really does�

Notice that when you define top�level variables and procedures� the procedures you create can

refer to other variables in the same top�level environment�

It is as though all of the top�level bindings were created by a single big letrec� so that the

initial value expressions create procedures that can �see� each others� name bindings� Expressions

that aren�t de
nitions make up the �body� of this imaginary letrec�

Recall that a procedure�de
ning define is equivalent to a variable�de
ning define with a

lambda expression to compute its initial value�

The following top�level forms

���

	define 	foo�

	��� 	bar� �����

	define 	bar�

	��� 	baz� �����

	define 	baz�

	��� 	quux� �����

���

	foo�

���

are therefore equivalent to

Chapter �� Introduction ��

���

	define foo

	lambda 	�

	��� 	bar� ������

	define bar

	lambda 	�

	��� 	baz� ������

	define baz

	lambda 	�

	��� 	foo� ������

���

	foo�

���

When we view top�level defines as being implicitly like parts of a letrec� the program takes

the equivalent form

	letrec 	���

	foo 	lambda 	�

	��� 	bar� ������

	bar 	lambda 	�

	��� 	baz� ������

	baz 	lambda 	�

	��� 	foo� ������

����

���

	foo�

����

�Actually� things are scoped like this� but the initial value expressions of defines and the non�

de
nition expressions are evaluated in the order they occurred in the source program� For top�level

expressions� you can depend on Scheme executing the executable parts of de
nitions in the order

written�

Chapter �� Introduction ��

Local defines work pretty this way� too� A Scheme interpreter or compiler recognizes any

defines that occur at the beginning of a body as being parts of an implicit letrec� the subsequent

expressions in the same body are treated as the body of the implicit letrec�

So the following procedure

	define 	my�proc�

	define 	local�proc���

����

	define 	local�proc���

����

	local�proc���

	local�proc����

is equivalent to

	define 	my�proc�

	letrec 		local�proc�� 	lambda 	� �����

	local�proc�� 	lambda 	� ������

	local�proc���

	local�proc�����

If we �desugar� the outer define� too� we get

	define my�proc

	lambda 	�

	letrec 		local�proc�� 	lambda 	� �����

	local�proc�� 	lambda 	� ������

	local�proc���

	local�proc�����

Chapter �� Introduction ��

����� Variable Arity
 Procedures that Take a Variable Number of
Arguments

In Scheme� you can easily write procedures that can take a variable number of arguments�

Technically� the number of arguments a procedure accepts is called its arity� and we call a procedure

that accepts a variable number a variable arity procedure��

Often� you write procedures that take a certain number of normal �required arguments� but

can take more� When you pass a procedure more arguments than it requires� Scheme packages up

the extra arguments in a list� called a rest list�

The syntax for a variable arity procedure declaration is the same as for a
xed�arity procedure

declaration� except that the last argument is preceded by a dot ��� This last argument will hold

the rest list of extra arguments� or 	� if no extra arguments are passed�

The rest list argument is just a normal argument� except that it is initialized in a funny way	

with a list of all the actual arguments that followed the required ones� Inside the procedure� you

can access it like any other variable� and operate on the list with the normal list�manipulating

procedures�

Here�s a simple variable�arity procedure� which accepts zero required arguments and any number

of other arguments� It simply accepts a rest list of however many arguments are given� and then

displays that list of the arguments it was given�

	define 	display� � args�

	display args��

Calling this procedure with the combination 	display� � � �� displays the list 	� � ���

The syntax for declaring variable arity is a little weird� but it�s easier to understand if you�re

familiar with dot notation for improper lists� Intuitively� what�s to the right of the dot in dot

notation is the �rest� of the list being written� Here we use a symbol as a formal parameter that

symbolizes the �rest� of the �list� of arguments� beyond the required ones�

� Note that here �variable� just means that it varies� and arity means that what�s varying is the

number of argument variables� �Arity� comes from words like �nullary�� �unary�� �binary��

and �ternary�	these mean zero�argument� one�argument� two�argument� and three�argument�

respectively� �Sometimes people say things like ���ary� for unary �one argument� ���ary� for

binary� and �n�ary� for �variable arity��

Chapter �� Introduction ��

����� apply

The procedure apply allows you to call any procedure� and specify a list of values to be passed

as arguments� apply takes a procedure and a list of values� and then calls the procedure with those

values as arguments�

For example� 	apply � #	� ��� passes the values � and � to �� and is equivalent to 	� � ���

You�ll seldom need to use apply� because normal procedure calling works
ne in most situations�

Occasionally� though� it is convenient to be able to apply a procedure to a list of values that have

already been computed� �I�ll show an example in � chapter �� ��

�� Variable Binding Again

So far� I�ve sometimes casually talked about variables holding values� but that�s not quite right�

Variables are bound to storage� and storage holds values�

I�ve also sometimes casually talked about fetching �the value of a variable�� but that�s really

just a shorthand for fetching the value of the current binding of a variable� from the current

environment�

Consider what happens when we de
ne a variable foo with the de
nition 	define foo ���� We

can draw the binding of the variable in this way�

�������

foo � �������� ��

�������

When speaking precisely� we say that the variable foo is bound to the memory location rep�

resented by the box on the left� Binding just means making an association between a name and

something� �There are several senses of �binding�	it�s a very general word	but in this book� I�m

generally talking about associating program variables with actual storage�

For brevity� we refer to the location as the variable�s binding� but binding is really the relationship

between the name and the storage it names�

Chapter �� Introduction ��

In Scheme terminology� we talk about �bindings� as distinct from variables� because they are

two di�erent things� This is true in most other languages as well �e�g�� C and Pascal� but usually

people don�t make the distinction explicit� They�ll refer to a program variable as a variable� but

they�ll also call the storage allocated for a particular instance of that variable a �variable�� Usually�

experienced programmers aren�t confused by this�

In this book� I try to be a little more precise� because the distinction between variables and

bindings is especially important in discussing advanced topics that will come up later� For now�

rest assured that there�s nothing really unusual here	when I distinguish between variables and

bindings� that�s applicable to most programming languages� not just Scheme� I�m just giving a

name to something you probably already know�

�So far� we haven�t seen anything really special about Scheme variables and bindings� except

that the values in bindings are always pointers�

����� Identi�ers and Variables

In isolation� a textual identi
er �name such us as foo isn�t even a variable�

The static scoping structure of a program gives names a certain aspect of meaning� and the

dynamic execution of the program gives them more meaning�

In isolation� foo doesn�t mean anything� Used in a program� it can be the name of a variable�

At di�erent places in a program� it can be the name of di�erent variables� e�g�� a toplevel variable�

or a local variable in one or more procedures�

In Scheme an identi
er such as foo may not represent a variable at all� In the quote expressions

#foo and #	baz foo bar� it identi
es a symbol object� but in an entirely di�erent sense than vari�

able binding� It doesn�t name a variable foo� or a variable whose binding holds a pointer to foo	it

is a literal representation of a pointer to the unique symbol object whose printed representation is

foo�

����� Variables� Bindings and Values

The distinction between variables� bindings� and values is particularly important in Scheme� and

important for understanding interpreters and compilers� so I�ll take a little time to discuss it with

examples�

Chapter �� Introduction ��

What is this distinction� Why not just say that the variable holds a value� i�e�� why not call the

unit of storage a variable� Because that�s not right� Consider the following short program�

	define 	double x� � define a procedure that doubles its argument

	� x x��

	define 	quadruple x� � define a procedure that quadruples

	� 	double x� � its argument�

	double x���

	define 	foo x� � define a recursive procedure that calls

	if 	� x �� � itself if its argument is more than �

	foo 	� x ���� � handing the recursive call an argument

� that#s one less�

Notice that we�ve de
ned three procedures� double� quadruple� and foo� each of which has a

local �argument variable x� �An argument variable is just a local variable that gets its initial value

in a special way� passed from the caller of the procedure�

There are therefore three di�erent variables named x in this code� In each of the procedures� it

means something di�erent� Each procedure de
nes a di�erent meaning for the name x� and each

separate meaning is a di�erent variable�

This becomes obvious when we talk about �the variable x de
ned in the procedure double�

versus �the variable x in the procedure foo�� and so on�

Notice also that when we de
ne the procedures� there is no storage allocated for their local

variables� the variables named x in the procedures are just de
nitions	no space will be allocated

for them until the procedures are actually called� That�s when binding happens	some storage is

allocated at run time to hold the value�

�Bear in mind that this happens in other languages too� even if people don�t discuss it clearly	

for example� a C argument variable is bound when you enter the procedure� because suddenly space

is allocated for it and the name refers to that space�

When we call something a �variable�� that�s not because we can assign to it and change its value�

None of the above variables has a value that varies in that sense� none of these procedures happens

to modify the values they�re given as arguments� In some languages� such as pure functional

languages� you can�t do assignment at all� but those languages still have variables�

Chapter �� Introduction ��

In programming language terminology� the term �variable� means pretty much what it means

in mathematics	at di�erent times we invoke the same procedure and the variable will refer to

something di�erent� For example� I may call double with the argument ��� and while executing

in that call to double� the value of x will be ��� Later� I may call double with the value ���� and

while executing in that call the value of x will be ����

Consider how similar this is to variables in logic� I may have a logical statement that �for all

x� if x is a person then x is mortal�� �Forall x� person�x �� mortal�x� I can use the same logical

rule �statement and apply it to lots of things�

If Socrates is a person then Socrates is mortal� and if Bill Clinton is a person then Bill Clinton

is mortal� and so on� �Or even� if my car is human then my car is mortal�

Each time I use it� x may refer to a di�erent thing� and that�s why it�s called a variable�

Just because it�s a variable doesn�t mean that when I use it I change the state of the thing I use

it to refer to	for example� Bill Clinton is probably not modi
ed much by the fact that I�m inferring

something about him� and I�m pretty sure Socrates isn�t changed much at all by the experience�

It also doesn�t mean that the meaning of a variable changes from instant to instant� If I use

the rule above� and apply it to Socrates� saying �if Socrates is a person then Socrates is mortal�� x

consistently refers to Socrates	that�s the point� But I can also say that �if Bill Clinton is a person

then Bill Clinton is mortal�� In that case x refers consistently to Bill Clinton� In logic� we say that

in one case x is bound to Socrates� but then used consistently within the rule� and in the other� we

say it�s bound to Bill Clinton� and then used consistently within the rule�

The point here is that the same variable can refer to di�erent things at di�erent times� These

di�erent things are called bindings� because the variable is associated with ��bound to� something

di�erent each time�

Consider the recursive procedure foo� above� In a recursive procedure� the same variable may

be bound to di�erent things at the same time� Suppose I call foo with the argument ��� and it

binds its argument x and gives the binding the initial value ��� Then it examines that value� and

calls itself with the argument ��� The recursive call binds its argument x with the value ��� then

examines that and calls itself with the value ��� and so on�

At each recursive call� a new binding of x is created� even if the old bindings still exist� because

the earlier calls haven�t
nished yet	they�re suspended for the duration of the recursion�

Chapter �� Introduction ��

When there are multiple bindings in existence at the same time� only one one is �visible� as

a procedure executes� For example� in a recursive set of calls to a procedure� only one binding is

�in scope�� that is� visible to an executing procedure	the binding for that call� We call this the

current binding of the variable� When a call returns� an older binding becomes visible again� and

becomes the current binding�

But what is a variable bound to� i�e�� to what does a variable refer� In Scheme� it refers to a

piece of storage� When you call a procedure� for example� each argument variable is bound to a

piece of storage that can hold the argument value you pass� Inside that call to that procedure� that

variable name will refer to that piece of memory�

A single binding of a Scheme variable may hold di�erent values over time� because of assignments�

as in most procedural languages� So not only may the same variable be bound to di�erent pieces

of storage� but each piece of storage may hold di�erent values over time��

Sometimes people talk about binding a variable to a value� but in Scheme �and other languages

with assignment this is not correct� and speaking in this sloppy way causes confusion� If you don�t

distinguish between storage and values� you can�t talk clearly about assignment�

Always remember that there are three �one�to�many mappings� here�

� a single name �identi
er can be used for di�erent variables at di�erent places in a program�

or for a symbol

� a given variable may be bound to di�erent pieces of storage� e�g�� at di�erent calls to the same

procedure�

� a given binding may hold di�erent values if you assign to it and change what�s stored there�

To keep these terms straight� it�s usually best to think about local variables� top�level or global

variables are a special case� because they only have one binding each�

Top�level de
nes can be a little confusing in terms of the variable�binding�value distinction�

because they do three di�erent things� They declare a variable that will be visible in a scope �the

top level scope� they bind they variable to new storage �creating the top�level binding� and they

initialize that storage with an initial value�

� Here the analogy may not be very intuitive� it�s as though you used a name like x to refer to

di�erent �people� at di�erent times� but those people were all alike� and uninteresting except

for what you call them and what they point at with their index
ngers� In this analogy� set is

like telling one of these very boring people �point at that for now��

Chapter �� Introduction ��

��
This is the end of Hunk M�

TIME TO TRY IT OUT

At this point
 you should go read Hunk N of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk N� which starts at Section ����� �Interactively Changing a Program�� page ����

��� Tail Recursion
Hunk O�

��
Hunk O starts here�
��

Many Scheme programs rely heavily on recursion� and Scheme makes it easy to use recursion in

ways that aren�t feasible in most other languages� In particular� you can write recursive procedures

which call themselves instead of looping�

When a procedure calls itself in a way that is equivalent to iterating a loop� Scheme automatically

�optimizes� it so that it doesn�t need extra stack space� You can use recursion anywhere you could

use a loop in a conventional language� Technically� loop�like recursion is called tail recursion� which

we�ll explain in detail later�

�The basic idea is that you never have to return to a procedure if all that procedure will do is

return the same value ot its caller� Scheme can implement such tail calls as a kind of GOTO that

passes arguments� without saving the state of the caller�

Some compilers for languages such as C perform a limited form of �tail call optimization�� but

Scheme�s treatment of tail calls� is more general� and standardized� so you can use recursion more

freely in your programs� without fear of stack over�ow�

And of course� you can use recursion the way you would in most languages� as well as for loops�

so recursion can do both jobs� While Scheme has conventional�looking looping constructs� they�re

de
ned in terms of recursion�

Chapter �� Introduction ��

���� Macros

Scheme is very procedure�oriented� but procedures can�t do everything� at least not in a way

that is syntactically pretty and e�cient�

Sometimes you want to de
ne your own control structures and data�de
ning expressions that

can�t be clearly and e�ciently expressed as procedures� and for this Scheme provides a syntactic

extension or macro facility�

With macros� you can de
ne stereotyped pieces of code� and how to transform them for di�erent

purposes�

You might have had bad experiences with macros in other languages� like C� but Scheme�s macro

system is special� It�s an extremely powerful mechanism for abstracting over programs and putting

things together in special ways�

As we�ll see in a later chapter� with Scheme macros you can e�ectively reprogram the compiler to

change the language and its implementation� This is not something you�ll need to do often	most

of the time you�ll do
ne with normal programming and higher�order procedures	but sometimes

it�s extremely useful for building your own extended version of Scheme to solve particular kinds of

problems� or for automating tedious and repetitive aspects of program construction�

���� Continuations

Scheme has the usual control constructs that most languages have	conditionals �if statements�

loops� and recursion	but it also has a very special control structure called call�with�current�

continuation�

�Warning� call�with�current�continuation is weird�

call�with�current�continuation allows you to save the state of a computation� package it up

as a data structure� and go o� and do something else� Whenever you want� you can restore the old

saved state� abandoning the current computation and and picking up where the saved computation

left o��

Chapter �� Introduction ��

This is far more powerful than normal procedure calling and returning� and allows you to

implement advanced control structures such as backtracking� cooperative multitasking� and custom

exception�handling�

You won�t use call�with�current�continuationmost of the time� because more conventional

control structures are usually su�cient� But if you need to customize Scheme with a special

control structure to solve a particular kind of problem� you can do it with call�with�current�

continuation�

��
This is the end of Hunk O�

TIME TO TRY IT OUT

At this point
 you should go read Hunk P of the next chapter
and work through the examples using a running Scheme system�
Then return here and resume this chapter�
��

�Go to Hunk P� which starts at Section ������� �Basic Programming Examples�� page ����

���� Iteration Constructs

You may have noticed that we haven�t discussed iteration constructs much� Scheme does include

iteration constructs like do� which we�ll describe later� but you�ll use them less than in most other

languages� It�s usually easier to use recursion� once you get the hang of it� When you do use

iteration constructs� you should also understand that they�re really syntactic sugar for recursion�

For most purposes� you can use Scheme�s iteration constructs as you would in other languages�

but they�re actually interestingly di�erent� Scheme�s iteration constructs are really syntactic sugar

for tail recursion� Anything you can do iteratively� you can do with recursion� and recursion lets

you do other things that normal iteration doesn�t�

The main di�erence between Scheme�s iteration constructs and the ones you may be used to

is that loop variables aren�t updated at each iteration� This doesn�t mean you don�t have loop

variables	the di�erence is that loop variables are rebound at each iteration �tail call� rather than

being bound once on entry to the loop� and updated �assigned to at each iteration�

�Don�t worry if this doesn�t make sense yet	it will later�

Chapter �� Introduction ��

It turns out that having a new binding of the loop variable at each iteration is very convenient

when using
rst�class procedures and continuations� For example� if you create a
rst�class proce�

dure in a loop body� it can continue to refer to the variable binding for the iteration of the loop

that created it�

���� Discussion and Review

Chapter �� Using Scheme �A Tutorial ��

� Using Scheme �ATutorial�

In this chapter� I�ll describe how Scheme works from the user�s point of view� You should follow

along� experimenting with the actual Scheme system you use�

This chapter is not meant to be read independently of the previous chapter� I�ve included notes

saying which parts of the previous chapter you should read before working through parts of this

one� If you haven�t already� you should read the
rst part of that chapter�

This chapter is also not meant to be read without a running Scheme system to try things out�

�If you haven�t read Hunk A of the previous chapter� please go to Section ��� �What is Scheme���

page � and read until you reach the end of Hunk A and are directed back here�

��� An Interactive Programming Environment
Hunk B�

��
This is the beginning of Hunk B�
��

Most Scheme implementations are interactive� The Scheme system is just a program with a

command interpreter� When it starts up� it presents you with a prompt� letting you type in an

expression� The Scheme system �interprets� that expression� and does what it says to do� Then it

prints out a textual representation of the result of the expression�

�Your Scheme system may have a graphical user interface� but the basic idea is the same	you

tell Scheme what to do� and it obediently does it� tells you what happened� and asks for the next

command� With a GUI� you may be able to tell Scheme what to do by clicking on buttons� etc�

This is very similar to an operating system�s command interpreter or �shell�� A shell is just an

interpreter for a language	usually a really ugly language�

The nice thing about an interactive programming environment is that your program doesn�t go

away after you run it� You�re �inside� the program� and you can tell it what to do� but instead of

just running to completion� it comes back and asks you what to do next�

Chapter �� Using Scheme �A Tutorial ��

The values of variables are still around� and you can look at them if you want to� This makes

it easy to debug a program� You can type in de
nitions of variables and procedures� and then run

a procedure and see if it does what you expect� If not� you can rede
ne it� In e�ect� you�re inside

your program� and the Scheme system acts as a dispatcher� executing whatever part you want and

letting you examine the results� This makes it easy to build and test your program in small pieces�

and gradually build up larger and larger pieces that use those pieces�

In this section� we�ll go through a simple example session with Scheme� fairly slowly� starting

with examples similar to the ones in the previous chapter� I�ll assume Scheme is already properly

installed on your system� If it�s not� you need to get Scheme and install it� or have someone install

it for you�

�Plug� you might want to use our Scheme� RScheme� which is free� There are other implementa�

tions of Scheme of course� including commercial products and other free implementations� If you�re

using a di�erent Scheme� its operation should be very similar	see the manual for your system�

It�s a very good idea to follow along with this text in front of a running Scheme system� so that

you get used to using it interactively� I�ll assume you are doing this� and say �do this� and �do

that�� You don�t have to do it� of course� but it�s the best way to learn Scheme�

����� Starting Scheme

First we start up Scheme� If we�re using RScheme under UNIX� that�s probably by typing rs at

the UNIX � prompt� �RScheme might be installed under a di�erent name on your system� perhaps

rscheme� if so� use that name instead� If you�re not using UNIX� start up RScheme the way you

start up any program on your system� perhaps by clicking on its icon� If you�re using UNIX but

your shell has a di�erent prompt� like �� don�t worry about it�

�rs

Now the Scheme system starts up and prints out some information about itself� usually including

including the name and version version number� and then gives you a Scheme prompt� We�ll pretend

that the prompt is Scheme�� but on your system it�s probably something di�erent� �For RScheme�

it�s something like top'�(��� where the
rst few characters give you some information about the

state of the system� and the �� tells you it�s ready for input�

Scheme then waits for you to type in an expression and hit �RETURN�� �By that I mean hit the

�RETURN� or �ENTER� key on the keyboard� In some Scheme systems� these may be distinct

Chapter �� Using Scheme �A Tutorial ��

keys� and you may have to hit �ENTER�� the documentation for your system will tell you which

key does what�

Scheme lets you type� echoing the characters to the screen� and doesn�t do anything else until

you hit �RETURN�� Until you hit �RETURN�� you can back up to correct typing mistakes �just as you

can in an operating system�s command shell� using the delete or backspace key�

Now type in a variable de
nition 	define myvar ���� and hit �RETURN�� What�s happening on

the screen looks something like this�

Generational Real�Time Garbage Collector Version ���

RScheme version ��

Scheme�	define myvar ���

�void

Scheme�

Here we de
ned a variable named myvar� giving it the initial value ��� Scheme read what we

typed and
gured out what it meant� and then allocated some storage for the variable binding� and

initialized that storage with �a pointer to ��� Scheme keeps track of the fact that the storage it

allocated is now known as myvar� as well as keeping track of the value in it�

What Scheme prints out after evaluating this expression may be di�erent on your system �you

may not see �void� That�s because the Scheme standard doesn�t specify what�s returned as the

value of a de
nition expression� �It�s possible that your Scheme system will print out something a

little more verbose� or di�erent� or nothing at all as the value of a define expression� Don�t worry

about it�

You don�t usually use the result value of a de
nition	you�re just de
ning something to use

later� Depending on the implementation you�re using� you�ll see whatever the implementors chose

to have de
nitions return� In some systems� a special unusable value is returned� and Scheme will

suppress the printing of these meaningless values to avoid clutter on the screen�

����� Making mistakes and recovering from them

Sometimes you�ll make mistakes when interacting with Scheme� This is quite normal� and if

you�ve done it already� don�t worry� When Scheme detects that something�s wrong� it will complain�

In most text�based Scheme systems� it will give you a special kind of prompt� so that you can type

in commands to
x the mistake� In other systems� it may invoke a debugger� which is a program for

Chapter �� Using Scheme �A Tutorial ��

diagnosing and
xing mistakes� For now� you need to know the command for your system that tells

Scheme to give up on trying to
x the mistake� and go back to its normal �top level� interaction

mode� Later� you should learn how to use the debugging facilities of your system� but for now just

being able to get back to the normal Scheme prompt will do�

Assuming you�ve looked up the command for aborting an expression �by reading the manual�

or asking a help system� you should try it out� You should make a mistake intentionally� watch

what the system does� and make sure you can recover from your mistakes�

Here�s a good mistake� and a hypothetical response from the Scheme� and a recovery to the

normal Scheme prompt� Try this on your system� and make sure you can do the equivalent things�

Scheme�	� � ��

ERROR� attempt to apply non�procedure �

break'�(�
toplevel

Scheme�

Here� we typed in the expression 	� � ��� which is illegal� The Scheme system recognized it as

a compound expression that�s not a special form� so it attempted to interpret it as a procedure

call� and apply the result of the
rst subexpression to the results of the other subexpressions� In

this case� the
rst subexpression is �� which evaluates to �� which isn�t a procedure at all� At that

point� Scheme complained� telling us we�d tried to use � as a procedure� and switched to a �break

loop� for debugging�

The break loop presented the special debugging prompt break'�(�� asking what to do about

it� We typed in the special command
toplevel to tell it to go back to normal interaction� and it

did� presenting us with a fresh Scheme� prompt�

In your system� the prompts and commands are likely to be di�erent� �For example� special

commands may start with a colon� rather than a comma� and have di�erent names� Whatever they

are� they�ll be simple� and you should learn to use them as soon as possible� See the documentation

for your system�

Here�s another common mistake� which you will make pretty soon� so you should try it and see

what happens and how to get out of it�

Chapter �� Using Scheme �A Tutorial ��

Scheme�a�variable

ERROR� unbound variable� a�variable

break'�(�
toplevel

Scheme�

Here what happened is that we asked Scheme to evaluate the expression a�variable� Since

a�variable is just a normal identi
er� like a variable name� Scheme assumed it was supposed to be

a variable name� and that we were asking for its value� There wasn�t a variable named a�variable�

though� so Scheme complained� In Scheme terminology for giving a piece of memory a name� we

hadn�t de
ned that variable and �bound� it to storage� Scheme couldn�t
nd any storage by that

name� much less fetch its value�

�Your system may let you get away with using set on an unde
ned variable� silently creating

a binding automatically� This is not required by the Scheme standard� and programs generally

should not do this�

As before� we used the special escape command to abort the attempt to evaluate this broken

expression� and get back to normal interaction with Scheme�

����� Returns and Parentheses

A common mistake in Scheme is to forget the closing parentheses of expressions� If you forget

a closing parentheses	usually because you need several to close nested expressions	most systems

will just hang� waiting you to
nish typing the expression�

This is a feature� not a bug� It lets you put �RETURN�s �line breaks in your input� to format

the code on the screen as you type it in� When you type in the last closing expression and hit

�RETURN� again� Scheme recognizes that you�ve typed in a whole expression� and evaluates it and

prints the result�

So if you type in an expression and hit �RETURN�� and Scheme doesn�t do anything� check to see

if you closed all of the parentheses you opened� If not� just type in the missing parenthesis and hit

�RETURN� again�

�It�s also possible that in your system� you have to do something special to get Scheme to

evaluate an expression	like hitting a di�erent key� or clicking on a button or a menu item� In

such systems� �return� may be only for formatting the text you�re inputting� and another key tells

Scheme to go ahead and evaluate what you�ve typed�

Chapter �� Using Scheme �A Tutorial ��

����	 Interrupting Scheme

Inevitably� you�ll sometimes code routines that get stuck in in
nite loops �or in
nite recursion�

You need to know how to stop such loops and get back to the normal Scheme interaction prompt�

Scheme systems generally allow you to �interrupt� what the system is doing� and get a new prompt�

In most UNIX�based Scheme systems� you can use �ctrl��C� i�e�� hold down the CONTROL

key and hit the c key� to send an interrupt� In other systems� there will be another keyboard

command or a button or menu item you can click� Find out what the command is for your system�

You�ll need it�

In general� if the system hangs� you should check to see if you closed all of the parentheses you

opened	it may just be waiting for you to
nish your input� If that doesn�t work� and you think

the program is stuck in an in
nite loop� or some other computation you don�t want to wait for�

interrupt it with �CTRL��C or the equivalent on your system�

It�s possible that even this won�t work� After all� Scheme systems can have bugs� too� In very

unusual circumstances� you may have to kill the Scheme program more brutally� If you�re using a

window system� you may be able to just kill the window Scheme is running in� Under UNIX� you

can use the ps command to
gure out the process ID of the Scheme process� and kill it with the

kill command� �This may require the �% option�

����� Exiting �Quitting Scheme

When you�re through using Scheme interactively� you need to be able to get out of it� You give

a command to tell the interactive Scheme system �which is just a program to terminate�

Most systems have a special command �starting with comma or whatever the convention is�

like
exit� �It might also be
quit�
halt� or
bye� There may be a Scheme procedure you

can evaluate to kill the system� by evaluating a procedure call expression in the normal way� e�g��

	exit�� 	halt�� 	quit�� or 	bye��

In many systems �especially under UNIX� you can use an interrupt key sequence to kill the

system� if you�re at the top�level� E�g�� at the top�level prompt� �ctrl��D� may do it�

Chapter �� Using Scheme �A Tutorial ��

����� Trying Out More Expressions

Now that you�re familiar with typing in erroneous expressions� let�s get back to trying legal ones�

If you�ve exited your Scheme system�
re it up again�

Type in the addition expression 	� � ��� and hit �return�� �From now on� I�ll skip saying �and

hit �return��� I�ll also stop showing the prompt Scheme gives you after printing the result of an

expression�

Scheme�	� � ��

�

Again� Scheme evaluated the expression� printed the result� which was �a pointer to �� and

gave you a prompt to type in something else� Notice that it didn�t save the value anywhere� It just

printed out the result�

The value we gave to myvar earlier is still there� though� We can ask Scheme what it is� just by

typing in a variable reference expression� i�e�� just the variable name�

Scheme�myvar

��

Scheme has kept track of the storage named myvar� and it evaluates the expression myvar by

looking up the value� Then it prints out that result� and gives you another prompt� as it always

does�

To change the value stored in the binding of myvar� and look at the new value� just type in a

set expression and then the name of the variable� like this�

Scheme�	set myvar ���

�void

Scheme�myvar

��

You may see a di�erent result for the set expression� Standard Scheme doesn�t specify the

return value of set� because you generally use it for its side�e�ect� not its result� As with define�

your system may return something di�erent� It may also suppress the printing of this useless value�

so you may not see anything at all�

Chapter �� Using Scheme �A Tutorial ��

In some Scheme systems� the value of a set expression is the name of the variable being set�

so you may see somthing like this�

Scheme�	set myvar ���

myvar

Scheme�myvar

��

�In other systems� it�s something else� like the old value of the variable you�re clobbering� You

should not depend on the value returned by the set if you want your program to be portable� In

the example above� it doesn�t really matter what result the set returns� except that that�s what

gets printed out before you get a new prompt� What matters about set is its e�ect� which is to

update the value of the variable binding� As we can see� it had its e�ect	when we evaluate the

expression myvar� it returns the new value� which is printed out� ���

We can also use more complicated expressions	just about anything� Now we�ll increment the

variable by
ve� and again ask Scheme the value of the variable�

Scheme�	set myvar 	� myvar ���

�void

Scheme�myvar

�

Now let�s de
ne a procedure that expects a number as its argument� and returns a number

that�s twice as big� Then we�ll call it with the argument ��

Scheme�	define 	double x� 	� x x��

�void

Scheme�	double ��

�

After evaluating the
rst expression� Scheme keeps track of the de
nition of double� When we

type in the second expression� Scheme calls that procedure� which returns a result� which Scheme

prints out�

Since Scheme keeps track of the variables and values we typed in earlier� we can call double to

double the value of myvar�

Chapter �� Using Scheme �A Tutorial ��

Scheme�	double myvar�

 �

We can de
ne new procedures in terms of old ones� �Actually� we did this when we de
ned

double	it�s de
ned in terms of �� which is prede
ned� i�e�� Scheme knows that de
nition when it

starts up�

Scheme�	define 	quadruple x� 	double 	double x���

�void

Scheme�	quadruple ���

��

Now try using the prede
ned Scheme procedure display�

Scheme�	display �Hello
 world��

Hello
 world

�void

Here display had the side�e�ect of printing Hello
 world to the screen� and returned the

value void�� which was printed�

What you see on the screen may vary in a couple of ways� neither of which is worrisome� Your

system may have printed the return value on the same line as the �side�e�ect output of display�

without a linebreak� Since the main use of display is for its e�ect� its return value is unde
ned�

so you may see something other than �void� or nothing at all� You might see this�

Scheme�	display �Hello
 world��

Hello
 world

�Hello
 world�

If you do� it means that in your system display returns the object you asked it to display�

Then Scheme prints out that return value� with double quotes to tell you it�s a string object� This

shouldn�t be too surprising	remember that Scheme prints out the return values of expressions

after evaluating them�

Now try displaying a number�

Chapter �� Using Scheme �A Tutorial ��

Scheme�	display ����

���

�void

����� Booleans and Conditionals

In Scheme� falsity is represented by the value false� written �f� Conceptually� �f is a pointer to

a special object� the false object�

Predicates are procedures that return either �t or �f� and don�t have side e�ects� Calling a

predicate is like asking a true�false question	all you care about is a yes or no answer�

Try out the �greater�than� predicate ��

Scheme�	� � ��

�f

Here we told Scheme to apply the predicate procedure to � and �� it returned �f and Scheme

printed that�

The important thing about �f is its use in conditionals� If the
rst subexpression �the condition

of an if expression returns the value �f� the second subexpression is not evaluated� and the third

one is� that value is returned as the value of the if expression�

Try just using the literal value �f as the
rst subexpression of an if� i�e�� the �condition� that

controls which branch is taken�

Scheme�	if �f � ��

�

Here the second subexpression was just the literal �� so � was returned�

Now try it using the predicate �

Scheme�	if 	� � �� � ��

�

Chapter �� Using Scheme �A Tutorial ��

This is clearer if we indent it like this� lining up the �then� part �the consequent and the �else�

part �the alternative under the condition�

Scheme�	if 	� � ��

�

��

�

This is the right way to indent code when writing a Scheme program in an editor� and most

Scheme systems will let you indent code this way when using the system interactively	the you

can hit �RETURN�� and type in extra spaces� Scheme won�t try to evaluate the expression until you

write the last closing parenthesis and hit �RETURN�� This helps you format your code readably even

when typing interactively� so that you can see what you�re doing�

The false value makes a conditional expression �like an if go one way� and a true value will

make it go another� In Scheme� any value except �f counts as true in conditionals� Try this�

Scheme� 	if � � ��

What result value does Scheme print�

One special value is provided� called the true object� written �t� There�s nothing very special

about it� though	it�s just a handy value to use when you want to return a true value� making it

clear that all you�re doing is returning a true value�

Scheme�	if �t � ��

�

Scheme�	if 	� � �� � ��

�

Now let�s interactively de
ne the procedure min� and then call it�

Chapter �� Using Scheme �A Tutorial ��

Scheme� 	define 	min a b�

	if 	� a b�

a

b��

�void

Scheme� 	min �� ���

��

����� Sequencing

The Scheme system lets you type one expression� then it evaluates it� prints the result� and

prompts you for another expression� What if you want to type two or three expressions and have

them executed sequentially� i�e�� in the written order� You can use a begin expression� which just

sequences its subexpressions� and returns the value of the last subexpression in the sequence�

First let�s de
ne a �ag variable� which we�ll use to hold a boolean value�

Scheme� 	define flag �f�

�void

Now a sequence to �toggle� �reverse the value of the �ag and return the new value� If the �ag

holds �f� we set it to �t� and vice versa�

Scheme� 	begin 	if flag

	set flag �f�

	set flag �t��

flag�

�t

This evaluated the if expression� which toggled the �ag� and then the expression flag� which

fetched the value of the variable flag� and returned that value�

We can also write a procedure to do this� so that we don�t have to write this expression out

next time we want to do it� We won�t need a begin here� because the body of a procedure is

automatically treated like a begin	the expressions are evaluated in order� and the value of the

last one is returned as the return value of the procedure�

Chapter �� Using Scheme �A Tutorial ��

Scheme� 	define 	toggle�flag�

	if flag

	set flag �f�

	set flag �t��

flag�

�void

Now try using it�

Scheme�flag

�t

Scheme�	toggle�flag�

�f

Scheme�flag

�f

Scheme�	toggle�flag�

�t

����� Other Flow�of�control Structures

������� Using cond

������� Using and and or

��
This is the end of Hunk B

At this point
 you should go back to the previous chapter and
read Hunk C before returning here and continuing this tutorial�
��

�Go BACK to read Hunk C� which starts at Section ����� �Comments�� page ���

������ Making Some Objects �Hunk D

��

Chapter �� Using Scheme �A Tutorial ��

Hunk D starts here�
��

I�ve been talking about �objects�� but most of the objects we�ve seen don�t have interesting

structure�

One of the most important kinds object in Scheme is the pair� which you can create with the

built�in procedure cons� A pair is a simple kind of structured object� like a Pascal record or a

C struct� It has two
elds� called the car and the cdr� and you can extract their values with the

procedures car and cdr�

cons takes two arguments� which it uses as the initial values of the car and cdr
elds of the

pair it creates� �cons is called that because it constructs a pair� the name is short because it�s a

common operation� In Lisp� pairs are called �cons cells� because you make them with cons�

I�ll show you some simple examples of playing with pairs� just to show you what they are� Be

warned that these are bad examples� in that there are usually cleaner ways to do things� which

we�ll discuss later when we get to lists� �Lists are made of pairs�

Scheme�	cons � ��
	� � ��

What happened here was that the call to cons created a pair� and returned �a pointer to it�

Scheme printed out a textual representation of the pair� showing the values of its car and cdr
elds�

We didn�t do anything with the pair except let Scheme print it� so we�ve lost it	we didn�t save

a pointer to it� so we can�t refer to it� �The garbage collector will take back its space� so we don�t

have to worry that we�ve lost storage space�

Let�s try again� de
ning �and binding a variable� and initializing it with the pointer that cons

returns�

Scheme�	define my�pair 	cons � ���

�void

Scheme�my�pair

	� � ��

Chapter �� Using Scheme �A Tutorial ��

Now try extracting the values of the pair�s
elds� using car and cdr� �In Scheme� 	car foo�

is equivalent to C�s foo��car� dereferencing a pointer to an object and extracting the value of the

car
eld� Likewise � 	cdr foo� is like foo��cdr� The operators that access
elds of a pair are just

procedures�

Scheme�	car my�pair�

�

Scheme�	cdr my�pair�

�

We don�t need to use any special pointer syntax to dereference the pointer to the pair	car and

cdr expect a pointer� and return the
eld values of the pair it points to�

car and cdr only work on pairs� If you try to take the car or cdr of anything else� you�ll get a

runtime type error�

Try it�

Scheme�	car �t�

ERROR� attempt to take the car of a non�pair �t

break�
top

Scheme�

The messages you�ll see vary from system to system� but the basic idea is the same� We tried

to take the car of the boolean �f� which makes no sense because it has no car
eld	it doesn�t

have any
elds� Scheme told is it didn�t work� and gave us a break prompt for sorting it out� Then

we just used the
top command �or whatever works on your system to tell Scheme to give up on

evaluating that expression and go back to normal interaction�

Scheme also supplies procedures to change the values of a pair�s
elds� called set�car and

set�cdr� They take two arguments� a pair and a value for the
eld being set�

Chapter �� Using Scheme �A Tutorial ��

Scheme�	set�car my�pair ��

�void

Scheme�my�pair

	� � ��

Scheme�	set�cdr my�pair ��

�void

Scheme�my�pair

	� � ��

The value of the variable my�pair hasn�t actually changed� even though it prints di�erently�

my�pair still holds a pointer to the same object� the pair we created with cons� What has changed

is the contents of that object� Its
elds are like variable bindings� in that they can hold �pointers

to any kind of object� and we�ve assigned new values to them� �They�re value cells�

We can refer to the same object by another name if we just de
ne another variable and initialize

it with my�pair�s value�

Scheme� 	define same�pair my�pair�

�void

Scheme�same�pair

	� � ��

Now suppose we assign a new value to the car of the pair� referring to it via my�pair

Scheme�	set�car my�pair ��

�void

Scheme�my�pair

	� � ��

Scheme�same�pair

	� � ��

Notice that the change is visible through same�pair as well as my�pair� because we�ve changed

the object that both of them point to�

Chapter �� Using Scheme �A Tutorial ��

Now let�s make another pair with the same
eld values�

Scheme�	define different�pair 	cons � ���

different�pair

Scheme�different�pair

	� � ��

Scheme�my�pair

	� � ��

Scheme�same�pair

	� � ��

Notice that we have two di�erent pairs� but Scheme prints them out the same way� because it

just shows us the structure of data structures� We can�t tell that they�re di�erent just by looking

at the printed output� From the printed representation� we can�t tell whether or not my�pair�

same�pair� and different�pair hold the same values�

Scheme provides a predicate procedure� eq�� to tell whether two objects are the exact same

object�

Scheme�	eq� my�pair same�pair�

�t

Scheme�	eq� my�pair different�pair�

�f

Scheme�	eq� same�pair different�pair�

�f

eq� tests object identity� like pointer comparisons in C �using �� or Pascal �using ��

It may be confusing� but in programming language terminology� two objects are called identical

only if they are the very same object� not just two objects that look alike� like �identical� twins�

When the government issues �identity� cards� this is the kind of �identity� we�re talking about�

Two so�called identical twins have di�erent identities� because they�re actually di�erent people�

A pointer is like a a social security number� because it uniquely identi
es a particular individual

object�

Chapter �� Using Scheme �A Tutorial ���

Scheme also has a test to see whether objects �look the same�� that is� have the same structure�

It�s called equal�� We call this a structural equivalence test�

Scheme�	equal� my�pair same�pair�

�t

Scheme�	equal� my�pair different�pair�

�t

Scheme�	equal� same�pair different�pair�

�t

different�pair is equal� to my�pair and same�pair because it refers to the same kind of

object� and its
eld values are equal�� Notice that that�s a recursive de
nition� which we�ll discuss

more when we get to lists�

If we didn�t have eq�� we could still
gure out whether two objects were exactly the same object�

by changing one and seeing if the other changed� too�

Scheme�	set�car my�pair ��

�void

Scheme�my�pair

	� � ��

Scheme�same�pair

	� � ��

Scheme�different�pair

	� � ��

Now I should warn you about set�car and set�cdr� The reason we put an exclamation

point in the name of a procedure that side�e�ects data is because it�s dangerous� If you have two

pointers to the same data from di�erent places� i�e�� di�erent variable bindings or data structures�

it�s hard to reason about how changes from one of those places a�ect things at the other place�

Usually� we like to be able to share data structures� for example� having two data structures

that both hold pointers to some third data structure� so the we don�t need two copies of it� We

don�t want to have subtle interactions between di�erent procedures that operate on shared data

structures�

Chapter �� Using Scheme �A Tutorial ���

You should only use side e�ects when you have a very good reason to� and make it clear that

that�s what you�re doing� Later examples will show how to program in a style that uses very few

side e�ects� and only where they make sense�

Notice that cons is not considered a side�e�ecting operation� because it returns a new object

that has never been seen before� Somewhere in the implementation of the language� cons side�

e�ects memory to initialize it� but you don�t see that	from your program�s point of view� you�re

getting a new piece of memory that magically has values in place�

��
This is the end of Hunk D�

At this point
 you should go back to the previous chapter and
read Hunk E before returning here and continuing this tutorial�
��

�Go BACK to read Hunk E� which starts at Section ������ �The Empty List�� page ���

������ Lists �Hunk F

��
Hunk F starts here�
��

We usually use pairs in Scheme in a particular� stereotyped way� to build lists�

Pairs are really like binary tree nodes	you can use the car and cdr
elds in the same ways�

The normal way of using them treats the car and the cdr di�erently� however�

The cdr
eld of a pair is used to hold a pointer to another pair� or a pointer to the empty list�

i�e�� a null pointer� This lets you string pairs to gether to make linked lists of pairs� The car
elds

of the pairs hold pointers to any kind of object you want to put in a list�

We can therefore de
ne the term list recursively as

� an empty list� i�e�� the null pointer object 	�� or

� a pair whose cdr value is a list�

Chapter �� Using Scheme �A Tutorial ���

Think about this� and make sure that you understand why this covers all null�terminated lists

strung together by the cdrs�

We usually think of lists as holding a sequence of values	we ignore the actual pairs� and think

about their cdr values�

Because this is how lists are usually used� Scheme has a special way of printing lists� In the

earlier examples� I showed that the result of 	cons � �� prints as 	� � ��� You might think that

	cons 	cons � �� 	cons � ��� would print as 		� � �� � 	� � ���� but it doesn�t�

The reason is that when Scheme encounters a pair whose cdr points to another pair or the

empty list� it assumes you want to think of it as a list of pairs strung together by the cdrs� and it

only shows you the car values�

Try this in your system�

Scheme�#	�

	�

Scheme�	cons � #	��

	��

Scheme�	cons � 	cons � #	���

	� ��

Scheme�	cons � 	cons � 	cons � #	����

	� � ��

Notice that the data structure that prints as 	� � �� is really a binary tree� and we could draw

it like this�

Chapter �� Using Scheme �A Tutorial ���

$

$

���������

� � � � �

��������$

� $

� ���������

� � � � �

��������$

� $

� ���������

� � � � �

���������

�

�

We generally wouldn�t� though� because we think of it as a sequence of numbers� and the pairs

are just there to string them together in order� We�d draw it more like this� using the box�and�arrow

notation from the previous chapter�

��������� ��������� ���������

����� � � �������� � � ������� � � � �

��������� ��������� ���������

� � �

� � �

� � �

We�ve really just rotated the picture �� degrees� so that �down and to the right� in the tree

goes straight right� and looks more like �next� in a linear list�

�The arrow coming in from the left represents the pointer value that was returned� which the

read�eval�print loop handed to write so that we could see the printed representation of the data

structure�

Drawing things this way lets us show shared structure� if a list overlaps with another list� e�g� if

one list joins with the other because some car in each list points at the same object�

Chapter �� Using Scheme �A Tutorial ���

Note that a list of this form always ends with a pair whose cdr is 	�� �i�e�� the empty list� a�k�a�

the null pointer�

If we had forgotten that� we might have tried to construct the list this way� with the innermost

cons just consing two numbers together�

Scheme�	cons � 	cons � ���

	� � � ��

This is a common beginning mistake� We have constructed an improper list	one which is not

null�terminated� It doesn�t end with 	��

We could draw the list this way�

��������� ���������

����� � � ���������� � � ���������

��������� ���������

� �

$�� $��

� �

Notice the dot in 	� � � ��	that�s like the dot in 	� � ��� saying that the cdr of a pair points

to �� not another pair or #	�� That is� it�s an improper list� not just a list of pairs� It doesn�t
t

the recursive de
nition of a list� because when we get to the second pair� its cdr isn�t a list	it�s an

integer�

Scheme printed out the
rst part of the list as though it were a normal cdr�linked list� but when

it got to the end� it couldn�t do that� so it used �dot notation��

You generally shouldn�t need to worry about dot notation� because you should use normal lists�

not improper list� But if you see an unexpected dot when Scheme prints out a data structure� it�s

a good guess that you used cons and gave it a non�list as its second argument	something besides

another pair or 	��

Scheme provides a handy procedure that creates proper lists� called list� list can take any

number of arguments� and constructs a proper list with those elements in that order�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	list � � � ��

	� � � ��

We could draw the result like this�

��������� ��������� ��������� ���������

����� � � ���������� � � ���������� � � ���������� � � � �

��������� ��������� ��������� ���������

� � � �

$�� $�� $�� $��

� � � �

Like any other procedure� list can be used with arguments that are procedure calls� such as

calls to list itself�

Scheme�	list 	list � �� 	list � ���

		� �� 	� ���

We can draw the result like this�

��������� ���������

����� � � ������������������������� � � � �

��������� ���������

� �

$�� $��

��������� ��������� ��������� ���������

� � � ���������� � � � � � � � ���������� � � � �

��������� ��������� ��������� ���������

� � � �

$�� $�� $�� $��

� � � �

While Scheme prints lists in normal list notation when it can� and only uses dot notation when

it has to� it can read either one�

We can type in literal lists using the quote special form� which just returns a list of the form

we typed�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	quote 	� � � ���

	� � � ��

Since Scheme can read dot notation� we can do this in an equivalent way� using parentheses

around the contents of each pair� and a dot to separate the car and cdr values�

Scheme� 	quote 	� � 	� � 	� � 	 � � 	������

	� � � ��

The di�erence between list and quote is that list is just a procedure� and each time you call

it� it creates a new list� The arguments to list can be any expressions you like� and their results

are what�s put in the list�

Scheme�	list 	double �� 	double �� 	double �� 	double ���

	� � � &�

On the other hand� quote is a special form� which only takes one argument� which is not

evaluated at all	it�s just a textual representation of a data structure�

Scheme�	quote 	double ���

	double ��

What happened here is that quote just returned a data structure� the list 	double ��� It did

not try to interpret it as an expression and give its value�

�The
rst item in the list is the symbol double� A symbol is just another kind of data object�

roughly like a string� which we�ll discuss later� It�s not the same thing as a variable� even though

it prints like a variable name�

Quoting is so common that Scheme provides a special bit of syntactic sugar to make it easier� In

instead of writing out 	quote before an expression� and a closing parenthesis after� you can just use

the special character #� Whatever follows should be the textual representation of a data structure�

and Scheme constructs that literal data structure�

Chapter �� Using Scheme �A Tutorial ���

Scheme�#	� � � ��

	� � � ��

Scheme�#		� �� 	� �� 	� ���

		� �� 	� �� 	� ���

Scheme�#	�f �t�

	�f �t�

Later� I�ll talk about quoting things besides lists� Quoted lists are enough for now	we�ll use

them a lot in examples�

��
This is the end of Hunk F�

At this point
 you should go back to the previous chapter and
read Hunk G before returning here and continuing this tutorial�
��

�Go BACK to read Hunk G� which starts at Section ��� �Type and Equality Predicates�� page ���

��� Using Predicates
Hunk H�

��
Hunk H starts here�
��

Suppose we want to sum a list of numbers�

We can write a procedure list�sum to do that� like this�

Scheme� 	define 	list�sum lis�

	if 	null� lis� � if empty list�

� � then sum is zero

	� 	car lis� � else it#s car plus the

	list�sum 	cdr lis����� � sum of rest of list

�void

Try typing in this example� or cutting and pasting it from this
le into your running Scheme

system� �If you�re reading this in a web browser� that should be easy	just cut the text from the

Chapter �� Using Scheme �A Tutorial ���

browser window� and paste it into your Scheme window at the prompt� Cutting and pasting is a

lot easier than typing in the whole thing�

This procedure accepts one argument� lis� which should be a list� It checks to see whether the

list is empty� i�e�� a null pointer� using the predicate null�� If so� it returns � as the sum of the

elements in the list�

If the list is not empty� the sum of the elements is the sum of the car value� plus the sum of the

elements in the rest of the list� In that case� list�sum takes the car of the list and the list�sum

of the rest of the list� adds them together� and returns the result�

Try calling this procedure with some lists of numbers� e�g��

Scheme�	list�sum #	� � ���

�

Scheme�	list�sum #	� � ���

��

Scheme�	list�sum 	cons � 	cons � 	cons � #	�����

�

The addition procedure � works with �oating�point numbers� not just integers� so we can call

list�sum with a list of �oats as well as integers� �As in most languages� �oating point numbers are

written with a period to represent the decimal point� Note that there is no space between the digits

and the decimal point� so that Scheme won�t confuse this with dot notation for lists�

Scheme�	list�sum #	� ��� �����

We can modify list�sum to print out its argument at each call� Then we can watch the recursion�

Scheme� 	define 	list�sum lis�

	display �in list�sum
 lis is� ��

	display lis�

	newline� � write a linebreak

	if 	null� lis� � if empty list�

� � then sum is zero

	� 	car lis� � else it#s car plus the

	list�sum 	cdr lis����� � sum of rest of list

�void

Chapter �� Using Scheme �A Tutorial ���

����� Using Type Predicates

We can generalize the procedure tree�sum to give us the sum of nested lists of integers� The

routine pair�tree�sum will take a list of integers� or a list of lists of integers� or a mixed list of

such lists� and return the sum of all of the integers in the nested lists at any level�

pair�tree�sum will handle improper lists as well as proper ones� it�s easier that way�

We call this pair�tree�sum because we�re really using nested lists as a binary tree of integers�

�Remember that a Scheme list is just a binary tree� where we�re usually think of �down and to the

right� as �next� in a linear list� In this case� we�re going to go down and to the left as well� to

compute the sum of nested lists�

In this case� the sum of a pair�tree is � if the pair tree is ��� and if it�s a pair� the sum of the

whole tree is the sum of its left subtree plus the sum of its right subtree�

Our recursive procedure will have to deal with three cases�

� null lists� e�g�� when it�s called on the cdr of the last pair in a list

� integers� e�g�� when it�s called on the car of a list of integers� and

� pairs� e�g�� when it�s called on the car of a list whose car is another list �i�e�� a sublist� or when

it�s called on the cdr of a list that�s not the end of a list�

If we view a list as a binary tree of pairs� the
rst two cases are the leaves of the tree	either a

number� or a null child pointer�

The third case is the recursive case� where we have a subtree to sum�

Our procedure will work for improper lists as well as proper lists� because we�ll treat the car

and the cdr the same way� as �left child� and �right child� pointers of a tree�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	define 	pair�tree�sum pair�tree�

	cond 		null� pair�tree�

��

		number� pair�tree�

pair�tree�

	else

	� 	pair�tree�sum 	car pair�tree��

	pair�tree�sum 	cdr pair�tree������

Try this out� at make sure you understand why it works�

Scheme�	pair�tree�sum #	��

�

Scheme�	pair�tree�sum ��

�

Scheme�	pair�tree�sum #	� � ���

�

Scheme�	pair�tree�sum #	� ���

�

Scheme�	pair�tree�sum #		� �� ���

�

Scheme�	pair�tree�sum #		�� � ��� � 	�� � �����

���

Scheme�	pair�tree�sum #		�� ��� 	�� �����

���

Add display and newline expressions at the beginning of pair�tree�sum� as we did for list�

sum� and try it out again� Be sure you understand the output in terms of the recursive call pattern�

����� Using Equality Predicates

Suppose that Scheme didn�t provide the predicate equal� to do structural comparisons� We

could write our own� because we have other type and equality predicates�

Let�s write a simpli
ed version of equal that works for lists� including nested lists� We�ll consider

objects to be our�equal� if they are either

� exactly the same objects or equivalent numbers� i�e�� they�re eqv�� or

Chapter �� Using Scheme �A Tutorial ���

� if they�re both pairs whose cars are our�equal� and whose cdrs are also our�equal��

That is� we�ll test lists recursively for structural equivalence� �bottoming out� when we hit

something that�s not a pair� This is pretty much what the standard Scheme predicate equal� does�

except that it can handle structured data types besides pairs� �For example� it considers two strings

with the same character sequence equal�� even if they�re two di�erent objects�

Scheme�	define 	our�equal� a b�

	cond 		eqv� a b�

�t�

		and 	pair� a�

	pair� b�

	our�equal� 	car a� 	car b��

	our�equal� 	cdr a� 	cdr b���

�t�

	else

�f���

This procedure checks the easy case
rst �which is usually a good idea� if two objects are eqv��

they�re also our�equal��

Otherwise� they�re only our�equal� if they�re both pairs and their cars are equal and their cdrs

are equal� Notice the use of and here� We
rst check to see that they�re pairs� and then take their

cars and cdrs and compare those� If they�re not pairs� we won�t ever take their cars and cdrs� �If

we did� it would be an error� but we rely on the fact that and tests things sequentially and stops

when one test fails�

Try it out�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	our�equal� #	� #	��

�t

Scheme�	our�equal� � ��

�t

Scheme�	our�equal� � ��

�f

Scheme�	our�equal� #	�� #	���

�t

Scheme�	our�equal� #	�� #	��

�f

Scheme�	our�equal� #	� 	��� #	� 	����

�t

Scheme�	our�equal� #			�� �� �� #			�� �� 	����

�f

Scheme�	our�equal� #		�f � �t� � 	�f � �t��

#		�f � �t� � 	�f � �t���

�t

��
This is the end of Hunk H

At this point
 you should go back to the previous chapter and
read Hunk I before returning here and continuing this tutorial�
��

�Go BACK to read Hunk I� which starts at Section ����� �Choosing Equality Predicates�� page ���

��� Local Variables� let� and Lexical Scope
Hunk J�

��
Hunk J starts here�
��

� to be written �

��
This is the end of Hunk J

At this point
 you should go back to the previous chapter and
read Hunk K before returning here and continuing this tutorial�
��

Chapter �� Using Scheme �A Tutorial ���

�Go BACK to read Hunk K� which starts at Section ��� �Procedures�� page ���

��� Using First�Class� Higher�Order� and Anonymous Procedures

Hunk L�

��
Hunk L starts here�
��

In this section� we�ll play with Scheme�s procedures� to illustrate

� �rst class procedures� i�e�� normal data objects in the language�

� higher order procedures� can take procedures as arguments and return them as values� and

� anonymous procedures� which can be created and referred to via pointers� without giving them

names

I�ll just brie�y demonstrate those ideas for now� later programming examples will show how

they�re really useful�

��	�� First�Class Procedures

Scheme procedures are
rst�class objects in the language� you refer to a procedure in the same

way you refer to any other object� via a pointer� A �procedure name� is really just a variable name�

and you can do the same things with �procedure� variables as with any other variable� There�s

really only one kind of variable in Scheme� and it�s type is �pointer to anything��

When we �de
ne a procedure� in Scheme� we�re really just de
ning a variable and giving it an

initial value that�s �a pointer to a procedure object�

The procedure de
ning syntax with parentheses around the procedure name �and argument

names is really just syntactic sugar� i�e�� a convenient way of writing something that you could do

in another way� � do I use �syntactic sugar� earlier� If so� de
ne earlier� �

For example�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	define 	double x�

	� x x��

�void

is exactly equivalent to

Scheme�	define double

	lambda 	x�

	� x x��

�void

Try this latter version in your system� Notice that what you�re doing is just de
ning a variable

named double and initializing it with the result of the second expression� a lambda expression�

lambda is the real procedure�creating operation� It�s a special form� because it lets you de
ne

a new procedure rather than calling an existing procedure in the normal way� lambda creates a

procedure object and returns a pointer to it�

�The predicate procedure� can be used to tell if an object is a procedure�

You can call the double procedure created this way in exactly the same way as one created with

the sugared procedure�de
nition syntax�

Scheme�	double ��

�

Recall how procedure calls really work� When you call a named procedure� e�g�� 	double ���

the procedure name is really just a reference to a variable� The
rst position in the procedure call

form is just an expression that�s evaluated like any other� In this case� we�re using the name double

as an expression� e�ectively saying �look up the value of double��

Try this

Scheme�double

��procedure�

Notice that we didn�t put parentheses around double� so we�re not calling it	we�re fetching

the value of the variable double� What you see on your screen may vary� but it�s your system�s

Chapter �� Using Scheme �A Tutorial ���

printed representation of a procedure object� Take a look at it� because you�ll want to be able to

recognize procedure objects in data structures�

�The printed representation may include the name of the procedure� don�t be misled by this�

Procedures don�t really have names	they�re just data objects you can have pointers to� as I�ll

explain shortly� Your system your system may put a name inside the procedure when you use the

procedure de
nition syntax� but it�s just an annotation saying what the procedure�s original name

was	i�e�� when it was
rst de
ned�

We can call a procedure in other ways� though	the
rst subexpression of a procedure call can

be any expression we want� as long as it returns a procedure� That expression is evaluated just

like the argument expressions	after it and the argument expresssions are evalutated� the resulting

procedure is called with those argument values�

Scheme�	define list�holding�double 	list double��

�void

Scheme�list�holding�double

	��procedure��

Scheme�		car list�holding�double� ��

��

What we did here was to create a list holding the procedure formerly known as double� and

looked at that list� Then we called that procedure by using the expression 	car list�holding�

double� as its �name��

What this shows is that procedures are really anonymous� that is� a procedure doesn�t have a

name in a direct sense� There are just expressions we can refer to it by� if those expressions result

in pointers to the procedure�

We can create procedures without normal names at all� by just using lambda� Let�s create

another doubling procedure by just evaluating a lambda expression�

Scheme�	lambda 	x� 	� x x��

��procedure�

Chapter �� Using Scheme �A Tutorial ���

The lambda expression just created a procedure and returned a pointer to it� and Scheme

displayed it however your system does it� We didn�t keep a pointer to the procedure� so we can�t

call it now� The procedure is gone and the garbage collector will clean it up�

We could try again� creating a procedure and keeping a pointer to it in a named variable� More

interestingly� we can just hand the pointer to a procedure call� and call it without ever giving it a

name�

Scheme�		lambda 	x� 	� x x�� ��

��

It may not look like it� but this is just a procedure call expression� where the �name� of the

procedure is a lambda expression to create the procedure we need� and its argument is �� Note

the nesting of parentheses	this is just like 	double ��� except that we give the �de
nition� of the

procedure to call� instead of its name�

Later we�ll show why using lambda directly is often much more convenient than having to name

all of our procedures� I�ll also explain why lambda is the most important special form in Scheme	it

is so powerful that most of the special forms can easily be translated into it�

�You might be concerned that creating a procedure and just using it once is very expensive� but

it turns out not to be	I�ll explain that later� too� For now� don�t worry about it�

��	�� Higher�Order Procedures

A higher�order procedure is one that can take procedures as arguments and�or return them

as values� We can use that to write generic procedures that do a basic kind of thing� and take

arguments that specialize its behavior�

Here�s a simple example�

Scheme provides a procedure display� which can write textual representation of a data object

on the screen� much like the way the read�eval�print loop displays results of expressions you type in�

�This is a very handy procedure for debugging� as well as for programs that interact with users�

Suppose� though� that you want to display a list of objects� not just one� You want a routine

list�display to iterate over a list� and display each item in it� The obvious way to write it is to

just call display from inside your list�display routine�

Chapter �� Using Scheme �A Tutorial ���

Here�s a version like that�

Scheme�	define 	list�display lis�

	if 	pair� lis�

	begin 	display 	car lis��

	list�display 	cdr lis�����

I�ve written this procedure recursively� because it�s easy to use recursion over lists	usually it�s

easier than using an iteration construct� This procedure checks to see if what it got was a pair�

and if so� it displays the
rst item� and then calls itself recursively to display the rest of the list� I

used a begin to sequence the displaying and the recursive call�

It would be cleaner to use cond� so here�s an equivalent version using cond�

Scheme�	define 	list�display lis�

	cond 		pair� lis�

	display 	car lis��

	list�display 	cdr lis�����

�Notice that this is a one�branch conditional� but we use cond instead of if because a cond

branch can be a sequence�

Now try it out�

Scheme�	list�display #	� � ���

����void

What happened here is that it displayed each item in the list as it was evaluated� and then

Scheme printed out the return value�

�We hadn�t speci
ed a return value	the procedure stops when it gets to an the end of the list�

and doesn�t take the
rst branch of the one�branch if The return value is whatever your Scheme

system uses as the result of a one branch if when the branch is not taken� It may suppress the

printing of an unspeci
ed value� so you may not see it at all�

This works� but the procedure is not very general� Iterating over lists is very common� so

it would be nice to have a more general procedure that iterates over lists� and applies whatever

procedure you want�

Chapter �� Using Scheme �A Tutorial ���

We can modify our procedure to do this� Instead of taking just a list argument� it can take an

argument that�s a procedure� and apply that procedure to each element of the list�

We�ll call our procedure list�each� because it iterates over a list and does whatever you want

to each element�

Scheme�	define 	list�each proc lis�

	if 	pair� lis�

	begin 	proc 	car lis��

	list�each proc 	cdr lis�����

The only change we made was to add an argument proc� to accept �a pointer to a procedure�

and to change the call to display into a call to proc�

Now we can call this general procedure with the argument display� to tell it to display each

thing in the list�

Scheme�	list�each display #	� � ���

����void

But maybe this isn�t what we want� We might want to print each item� and then a newline �go to

the next line� to spread things out vertically� We could write a procedure display�with�newline

to do that� but it�s easier just to use a lambda expression to create the procedure we need�

Try this�

Scheme�	list�each 	lambda 	x�

	display x�

	newline��

#	� � ���

�

�

�

�void

�Scheme has a standard procedure similar to our list�each� but more general� called for�each�

Rewrite list�each to use a one�branch cond and try it out�

Chapter �� Using Scheme �A Tutorial ���

��
This is the end of Hunk L

At this point
 you should go back to the previous chapter and
read Hunk M before returning here and continuing this tutorial�
��

�Go BACK to read Hunk M� which starts at Section ����� �lambda and Lexical Scope�� page ���

��� Interactively Changing a Program
Hunk N�

��
Hunk N starts here�
��

����� Replacing Procedure Values

Earlier we showed how to replace normal data values in variable bindings� using the side�e�ecting

special form set�

We can also change procedure values� One way of doing this is just to change the value of

the procedure variable� �Remember that a named procedure is really just a procedure object that

happens to have a pointer to it stored in that variable�

Just as we changed the value of the variable myvar using set� we can change the value of the

procedure variable quadruple� Try this�

Scheme�	quadruple ��

��

Scheme�	set quadruple double�

�'procedure(

Scheme�	quadruple ��

�

What happened here is that when we evaluated the expression 	set quadruple double� it

just did the usual thing set does when both of its arguments are variables	it computed the

value of the expression on the right� in this case by fetching the value from the binding of double�

and stored it into the �binding of the variable on the left� In this case� the value of double is

Chapter �� Using Scheme �A Tutorial ���

�a pointer to a procedure	the one that we created when we define�d double� This pointer was

copied into quadruple� so that it now contains a pointer to the very same procedure�

Calling quadruple now has the same e�ect as calling double� because either way� a pointer is

fetched from the variable� and whatever it points to is called�

Note that while this illustrates how Scheme works� and we�ll show why it�s handy later� it�s not

usually a great idea to go around changing the values of procedure variables by side�e�ecting them

with set�

Usually� once a program has been developed� you don�t want to clobber named procedures�

because it makes the code hard to understand	you don�t want your
nished program to go around

changing the meaning of procedure names as it runs� �You normally want to be able to look at

your program and see the de
nitions� and not have to worry that some other part of the program

may change the procedures at odd moments�

During interactive development of a program� however� it�s often very convenient to be able to

change a procedure�s behavior at will� �We�re not really modifying a procedure� though	we�re

changing a variable binding�s value to a�ect which procedure is called� We don�t have to actually

modify any procedure objects� because we can replace a pointer to one procedure with a pointer

to another�

Usually you�ll want to do this by rede�ning the procedure with another define expression�

For example� suppose we want to restore the old behavior of quadruple� which we foolishly

clobbered above� We can simply define it again� the old way�

Scheme�	define 	quadruple x� 	double 	double x���

quadruple

In a
nished program� you generally shouldn�t have multiple de
nitions of the same thing	a

define form should de
ne something that doesn�t change during program execution� If you want to

change the state of a binding� use set to make it clear that�s what�s going on� and put a comment

at the de
nition of the variable warning that it is likely to be changed at runtime�

Most interactive Scheme systems let you define the same variables multiple times� though� so

that you can change things during program development� �Note that we�re talking about rede
ning

the same program variable here� not de
ning di�erent variables with the same name in di�erent

scopes�

Chapter �� Using Scheme �A Tutorial ���

����� Loading Code from a File

When you�re actually developing a program� you often want to save the text in a
le� rather

than just typing it in and losing it when you exit the Scheme system�

The simplest way of doing this is to use an editor in one window and Scheme in another� From

the editor� save your program text into a
le� and then load it into Scheme with the load procedure�

load takes a string as an argument� which is the name of the
le to load� and reads it in just as

though you had typed it in by hand� at the prompt� �A string literal is written with double quotes

around it� there�ll be more about strings more later�

Type the following text into your editor and save it into a
le named triple�scm�

	define 	triple x�

	� x 	� x x���

Now� at the Scheme prompt� load the
le and call the procedure�

Scheme�	load �triple�scm��

loading���triple���done

Scheme�	triple ��

%

�Notice that in the above example� there�s no connection between the string we used to name

the
le� �triple�scm�� and the name of the procedure� triple� We just chose to call the
le

�triple�scm� to remind us what�s in it�

Usually� when you�re developing a program� you should put only a few de
nitions in a
le	

maybe just one� This lets you change small parts of your program� saved the changed
le� and

reload the
le to change the de
nitions in your running Scheme system�

Good editors also have packages that allow you to run Scheme and use an editor command to

send the contents of a
le �or a selected region of a
le to Scheme� as though you�d typed it in�

�Emacs has excellent facilities for this�

If you�re using a graphical user interface� you may be able to simply cut text from your editor�

and paste it into the window you have Scheme running in� so that it appears to Scheme as though

you�d just typed it in�

Chapter �� Using Scheme �A Tutorial ���

Be careful about reloading de
nitions� When you load a
le� the Scheme system will reuse the

same top�level bindings� and reinitialize them� In general� new objects will be constructed� even if

the textual de
nitions haven�t changed�

For example� suppose we have the following code in a
le� which we�ve already loaded once�

	define my�list 	list � ���

	define my�other�list 	cdr my�list��

If we reload this
le� all three de
nitions will be processed again� A new list will be constructed

and the existing binding of my�list will be updated to point at the new list�

Likewise� the existing binding of my�other�list will be updated with the cdr of that new

list� Each time we reload the
le� we�ll recreate the intended data structure� including the sharing

relationship between the two lists�

But now consider what happens if this code is spread across two
les� with the de
nition of

my�other�list in a di�erent
le� which we don�t reload� If we just reload the
rst de
nition� then

the binding my�other�list will still refer to the cdr of the old list� not the new one� If your code

depends on the two lists sharing structure� it not behave as expected� because the two variables�

bindings will refer to distinct lists�

Procedures can cause the same sorts of problems� If you have a pointer to a procedure in a

data structure� and then you rede
ne the procedure by modifying the de
nition and reloading it�

a new procedure object will be created� but the old data structure will still hold a pointer to the

old procedure object�

In general� you should be careful to recreate any data structures holding procedures if you rede�

ne those procedures� This is usually easy� if you reload the code that creates the data structures�

after reloading the new de
nitions of the procedures�

Notice that this is not necessary if you just call top�level procedures �or look up variable values

in the usual way� For example� given our earlier de
nitions of double and quadruple� changing

double a�ects quadruple immediately� Every time we call quadruple� it fetches the current value

of the binding of double� which ensures that it sees the most recent version� We can reload the

code for double� without reloading the code for quadruple�

Chapter �� Using Scheme �A Tutorial ���

����� Loading and Running Whole Programs

� to be written �

��	 Some Other Useful Data Types

Scheme has several important kinds of data objects that are useful in programming in general�

and particularly for writing an interpreter� as we�ll do in the next chapter� These include character

strings� symbols� and lists�

Scheme has two data types that represent sequences of characters� called strings and symbols�

Strings are pretty much like character strings in most programming languages	they represent a

sequence of text characters� Symbols are sort of like strings� but have a very special property	

there�s only one symbol object with any particular sequence of characters�

Symbols have a special role in the implementation of Scheme� because they�re part of the normal

representation of source code� symbols are used to represent names of variables� procedures� special

forms� and macros� They�re really just a kind of data object� though	you can use them in your

programs� whether or not you want to represent code�

Lists are used in interpreters and compilers to represent compound expressions in the source

code� nested expressions are generally represented by nested lists�

More generally� there�s a category of Scheme data structures called s�expressions� which consist

of basic types including symbols� strings� numbers� booleans� and characters� and list of those simple

types� or lists of such lists�

�S�expression� is short for �symbolic expression�� but it�s something of a misnomer� An expres�

sion is really a piece of a program� An �s�expression � is just a data structure� which may or may

not represent an expression in a programming language� although interpreters and compilers often

happen to use them that way�

Chapter �� Using Scheme �A Tutorial ���

����� Strings

Character strings in Scheme are written between double quotes� For example� suppose we want

an object that represents the text �Hello world�� We can just write that in a program� in between

double quotes� �Hello
 world��

You can use a string as an expression	the value of a string is the string itself� just as the value

of an integer is the integer itself� Like numeric literals and booleans� strings are �self�evaluating��

which just means that if you have an expression in your program that consists of just a string�

Scheme assumes you mean the value to be literally that string� There�s nothing deep about this	it

just turns out to be handy� because it makes it easy to use strings as literals�

Try typing the string �Hello
 world�� at the Scheme prompt�

Scheme��Hello
 world�

�Hello
 world�

What happened here is that Scheme recognized the sequence of characters between double

quotes as a string� and constructed a Scheme string object with that sequence of characters� It

then evaluated that object as an expression� Recognizing it as a string� it simply returned the

string object as the value of the expression� Then� as it always does� Scheme printed out the value

of the expression� namely the string object� The standard printed representation of a string object

includes the double quotes� so that you know it�s a string object�

If you want to print out a string� but without the double quotes� you can use the standard

procedure display� If you pass display a string� it just prints out the characters in the string�

without any double quotes� display is useful in programs that print information out for normal

users� Another useful procedure is newline� which prints a newline character� ending a line and

starting a new one�

Try typing a 	display �Hello
 world�� 	newline� at the Scheme prompt� What you get

may look like this�

Scheme�	display �Hello
 world�� 	newline�

Hello
 world

�void

You might see something slightly di�erent on your screen� depending on the return value of

newline� which is unspeci
ed in the Scheme standard�

Chapter �� Using Scheme �A Tutorial ���

If you type in an expression using a string literal like �foo� at the Scheme prompt� Scheme may

construct a new string object with that character sequence each time�

Try this�

Scheme�	define foo� �foo��
�void
Scheme�	define foo� �foo��
�void
Scheme�foo�
�foo�
Scheme�foo�
�foo�
Scheme�	eq� foo� foo��
�f
Scheme�	equal� foo� foo��
�t

For each of the define forms� Scheme has constructed a string with the character sequence

f�o�o� and saved it in a new variable binding� When we ask the value of each variable� Scheme

prints out the usual text representation of the string� The printed representations are the same�

since each string has the same structure� but they�re two di�erent objects	when we ask if they�re

eq�� i�e�� the very same object� the answer is no ��f�

It�s possible that in your system the eq� comparison will return �t� because Scheme implemen�

tations are allowed to use pointers to the same string if you type in two strings with the same

character sequence� For that reason� you should be careful not to depend on whether Scheme

strings are eq�� you should only distinguish whether they�re equal�� You can also use the predi�

cate string�equal� if you know the arguments are supposed to be strings� This has the advantage

of signaling an error if the arguments are of unexpected type�

Strings can be used as one�dimensional arrays �vectors of characters� There are procedures for

accessing their elements by an integer index� extracting substrings given two indices� and so on�

����� Symbols

Symbols are like strings� in that they have a character sequence� Symbols are di�erent� however�

in that only one symbol object can have any given character sequence� The character sequence is

called the symbol�s print name� A print name is not the same thing as a variable name� however	

it�s just the character sequence that identi
es a particular unique symbol�

Chapter �� Using Scheme �A Tutorial ���

Unlike strings� booleans� and numbers� symbols are not self�evaluating� To refer to a literal

symbol� you have to quote it� Since print names of symbols look just like variable names� you have

to tell Scheme which you mean�

If we type in the character sequence f o o without double quotes around it� Scheme assumes we

mean to refer to a variable named foo�

In interpreters and compilers� symbol objects are often used as variable names� and Scheme

treats them specially� If we just type in a character string that�s a symbol print name� and hit

return� Scheme assumes that we are asking for the value of the binding of the variable with that

name	if there is one�

Scheme�	define foo ���

�void

Scheme�foo

��

If we quote the symbol name with the single quote character� Scheme interprets that as meaning

we want the symbol object foo�

Scheme�#foo

foo

Since we�ve already de
ned �and bound the variables foo� and foo�� we can ask Scheme to

look up their values�

Scheme�foo�

�foo�

Scheme�foo�

�foo�

Here we�ve typed in the names that we gave to variables earlier� and Scheme looked up the

values of the variables�

As we�ve seen before� this doesn�t work if there isn�t a bound variable by that name� Symbols

can be used as variable names� if you de
ne the variable� but by default a symbol is just an object

with a particular print name that identi
es it�

Chapter �� Using Scheme �A Tutorial ���

If we want to refer to the symbol object foo� rather than using foo as a variable name� we

can quote it� using the special quote character #� This tells Scheme not to evaluate the following

expression� but to treat it as literal data�

Scheme� #foo

foo

The
rst time you type in a symbol name� Scheme constructs a symbol object with that character

sequence� and puts it in a special table� If you later type in a symbol name with the same character

sequence� Scheme notices that it�s the same sequence� Instead of constructing a new object� as it

would for a string� it just
nds the old one in the table� and uses that	it gives you a pointer to

the same object� instead of a pointer to a new one�

Try this�

Scheme�	define bar� #bar�

�void

Scheme�	define bar� #bar�

�void

Scheme�	eq� bar� bar��

�t

Here� when we typed in the
rst de
nition� Scheme created a symbol object with the character

sequence b a r� and added it to its table of existing symbols� as well as putting a pointer to it in

the new variable binding bar�� When we typed in the second de
nition� Scheme noticed that there

was already a symbol object named bar� and put a pointer to that same object in bar� as well�

When we asked Scheme if the values of bar� and bar� referred to the same object� the answer

was yes ��t	they both referred to the unique symbol bar� there is only one symbol by that name�

The big advantage of symbols over strings is that comparing them is very fast� If you want to

know if two strings have the same character sequence� you can use equal�� which will compare

their characters until it either
nds a mismatch or reaches the ends of both strings�

With symbols� you can use equal�� but you can get the same results using eq�� which is faster�

Recall that eq� just compares the pointers to two objects� to see if they�re actually the same object�

For symbols� this works to compare the print names� too� because two symbols can have the same

name only if they�re the same object� You don�t have to worry about symbols being equal� but

not eq��

Chapter �� Using Scheme �A Tutorial ���

This makes symbols good for use as keys in data structures� For example� you can zip through

a list looking for a symbol� using eq�� and all it has to do is compare pointers� not character

sequences�

Another advantage of symbols is that only one copy of its character sequence is actually stored�

and all occurrences of the same symbol are represented as pointers to the same object� Each

additional occurrence of symbol thus only costs storage for a pointer�

If you�re doing text processing in Scheme� e�g�� writing a word processor� you probably want to

use strings� not symbols� Strings support more operations that make it convenient to concatenate

them� modify them� etc�

Symbols are mainly used as key values in data structures� which happen to have a convenient

human�readable printed representation�

If you need to convert between strings and symbols� you can use string��symbol and symbol�

�string� string��symbol takes a string and returns the unique symbol with that print name� if

there is one� �If there�s not� and the string is a legal symbol print name� it creates one and returns

it� symbol��string takes a symbol and returns a string representing its print name� �There is

no guarantee as to whether it always returns the same string object for a given symbol� or a copy

with the same sequence of characters�

������� A Note on Identi�ers

When you type in a string� e�g�� �This here is a string
 you know��� you can type in pretty

much whatever you want� as long as it�s between double quotes and doesn�t have double quotes or

nonprinting characters in the middle� �You can have strings with double quotes in them� but you

have to use a special escape sequence trick�

When you type in a symbol� on the other hand� you have to be a little more careful	some

character sequences count as symbol names� but others don�t� For example� the character sequence

� � � doesn�t count as a symbol ���� because it�s a number� Character sequences with spaces�

parentheses� and single quotes in them are also a no�no� because those characters have special

meaning when reading and writing the printed representations of Scheme data structures�

A symbol name has to start with an �extended alphabatic� character	that a letter or any of a

fairly large set of printing characters� followed by a string of other extended alphabetic characters

Chapter �� Using Scheme �A Tutorial ���

or digits� �The extended alphabetic characters are a�z� A�Z� and these� � � � � � � � � � �) � �

" * !�

For example� the following are all symbols�

x

thursdays�total��

am�is�are�was�were�be�being�been

able�was�I�ere�I�saw�elba

floppy�drive����

fourscore�and� �years�ago

x����three�times�thirty�seven

��

lhs��rhs

x�����

There is a slight restriction that you can�t use a symbol name that starts with a character that

could begin a literal number� This includes not only digits� but �� �� � and �� A special exception

to this is that �� and �� by themselves� are symbols� and so is ��� �the ellipsis identi
er used in

macros�

Scheme identi
ers �variable names and special form names and keywords have almost the

same restrictions as Scheme symbol object character sequences� and it�s no coincidence� Most

implementations of Scheme happen to be written in Scheme� and symbol objects are used in the

interpreter or compiler to represent variable names�

Don�t read too much into this� however� it�s easy to write a Scheme interpreter or compiler in

Scheme� and that is why the rules for symbol names are the same as the rules for variable names�

but symbols and variables are very� very di�erent things� A symbol is just a data object� like a

string� that has the special property of being unique� You can use symbols like any other data

object� as part of any data structure�

It just happens that interpreters and compilers generally use symbol objects to represent the

names of variables and whatnot� so it�s convenient that the rules for symbol object names are the

same as the rules for identi
ers in the language	but there is no other connection�

Symbols are not necessarily variable names� they�re just a kind of data object �like strings that

happen to get used that way� by some programs �interpreters and compilers� Your programs can

Chapter �� Using Scheme �A Tutorial ���

use them any old way you choose� �Sorry to be repetitive on this point� but confusing symbols

and variables is one of the most common and avoidable problems in learning Scheme� It�s worse in

Lisp� where symbols and variables do have a deep connection� but not an obvious one�

����� Lists Again

Suppose we want to make a list of symbols whose print names are the English words for the

rst
ve integers� We could do it using quoting� of course� like this�

Scheme�	define firstfive #	one two three four five��

�void

Scheme�firstfive

	one two three four five�

We don�t have to quote each symbol individually� Within a quote expression� everything is

assumed to be literal data� not expressions to evaluate�

We could also do it by calling list to construct the list� and handing it each of the
ve symbols

as literals� To do that� we have to quote them� so that Scheme won�t think we�re referring to

variables named one� two� etc�

Scheme�	define firstfive 	list #one #two #three #four #five��

�void

Scheme�firstfive

	one two three four five�

Since list is a procedure� its argument expressions are evaluated� We use a quote around each

expression� so that it will return a pointer to the appropriate symbol� rather than the value of the

variable by the same name�

This works whether or not there is a variable by that name� because names of symbols and

names of variables are completely di�erent things�

For example� even after evaluating the above expressions� attempting to evaluate the expression

four will be an error� unless we�ve de
ned a variable named four� The existence of a symbol with

a given print name doesn�t say anything about the existence of a variable with that name�

Chapter �� Using Scheme �A Tutorial ���

������� Heterogeneous Lists

Since Scheme is dynamically typed� we can put any kind of object in a list� So far� we�ve made

a list of integers and a list of symbols� We can also make a list of di�erent kinds of things� such as

a list of integers� symbols� and lists�

Scheme�	define mixed� #	one � 	three and a� �four� ���

�void

Scheme�mixed�

	one � 	three and a� �four� ��

Here we�ve constructed a mixed list whose
rst element is a symbol� the second is an integer�

the third is a list of symbols� the fourth is a string� and the
fth is another integer� �The technical

term for a mixed list is a �heterogeneous list��

We can draw it like this�

�������

mixed� � ���������������� ��������� ��������� ��������� ���������

������� � � � ������ � � ������ � � ������ � � ������ � � � �

��������� ��������� ��������� ��������� ���������

� � � � �

$�� $�� � $�� $��

one � � �four� �

�

$��

��������� ��������� ���������

� � � ������ � � ������ � � � �

��������� ��������� ���������

� � �

$�� $�� $��

three and a

Notice that we draw the symbols �one� three� and� and a as simple sequences of characters�

This is just a drawing convention� They�re really objects� like pairs are� We draw strings similarly�

but with double quotes around them� Don�t be fooled	these are objects on the heap� too� We just

draw them this way to keep the picture from getting cluttered up�

Chapter �� Using Scheme �A Tutorial ���

������� Operations on Lists

We�ve already seen two list�processing procedures that you�ll use a lot� car and cdr� car takes

a pointer to a pair� and extracts the value of its
rst �car
eld� cdr takes a pointer to a pair and

returns the value of its second �cdr
eld�

�It might have been better if car had been called first and cdr had been called rest� since

that�s more suggestive of how they�re used� a pointer to the
rst item in a list� and a pointer to

the pair that heads the rest of the list�

Given our list stored in mixed�� we can extract parts of the list using car and cdr�

Scheme�	car mixed��

one

Scheme�	cdr mixed��

	� 	three and a� �four� five�

By using car and cdr multiple times� we can extract things beyond the
rst element� For

example� taking the cdr of the cdr of a list skips the
rst two elements� and returns the rest�

Scheme�	cdr 	cdr mixed���

		three and a� �four� ��

Taking the car of that list �that is� the car of the cdr of the cdr returns the
rst item in that

list�

Scheme�	car 	cdr 	cdr mixed����

	three and a�

We can keep doing this� for example taking the second element of that sublist by taking the car

of its cdr�

Scheme�	car 	cdr 	car 	cdr 	cdr mixed������

and

This starts to get tedious and confusing	too many nestings of procedures that do too little at

each step	so Scheme provides a handful of procedures that do two list operations at a whack� The

two most important ones are cadr and cddr�

Chapter �� Using Scheme �A Tutorial ���

cadr takes the car of the cdr� which gives you the second item in the list� cddr takes the cdr

of the cdr� skipping the
rst two pairs in a list and returning the rest of the list�

This lets us do the same thing we did above� a little more concisely and readably�

Scheme�	cadr 	car 	cddr mixed����

and

With a little practice� it�s not hard to read a few nested expressions like this� In this example�

taking the cddr of mixed� skips down the list two places� giving us the list that starts with the

sublist we want� Then taking the car of that gives us the sublist itself o� the front of that list� and

taking the cadr of that gives us the second item in the sublist�

Of course� even if Scheme didn�t provide cadr and cdr� you could write them yourself in terms

of car and cdr�

	define 	cadr x�

	car 	cdr x���

	define 	cddr x�

	cdr 	cdr x���

Scheme actually provides prede
ned list operations for all combinations of up to four car�s and

cdr�s� For example� cadadr takes the cadr of the cadr� �The naming scheme is that the pattern

of a�s and d�s re�ects the equivalent nesting of calls to car and cdr�

You probably won�t want to bother with most of those� because the names aren�t very intuitive�

Two procedures that are worth knowing are list�ref and list�tail�

	list�ref list n� extracts the nth element of a list list� which is equivalent to n�� applications

of cdr followed by car� For example� 	list�ref #	a b c d e� �� is equivalent to 	car 	cdr 	cdr

#	a b c d e����� and returns d�

In e�ect� you can index into a list as though it were an array� using list�ref� �Of course� the

access time for an element of a list is linear in the index of the element� If you need constant�time

access� you can use vectors� i�e�� one�dimensional arrays� Notice that the numbering is zero�based�

which is why 	list�ref lis �� returns the fourth element of a lis� This is consistent with the

indexing of vectors� which are also zero�based� as well as re�ecting the number of cdr operations�

Chapter �� Using Scheme �A Tutorial ���

	list�tail list n� skips the
rst n elements of a list and returns a pointer to the rest� which is

equivalent to repeated applications of cdr� �This is standard R�RS Scheme� but not IEEE Scheme�

If your Scheme doesn�t provide list�tail� you can easily write your own�

These two procedures can make it much clearer what you�re doing when you extract elements

from nested lists� Suppose that we have a list foo� which is a triply�nested list	a list of lists of

lists� and we want to extract the second element of the bottom�level list that is the third element

of the middle�level list that is the fourth element of the outermost list�

We could write 	car 	cdr 	car 	cdr 	cdr 	car 	cdr 	cdr 	cdr foo���������� but that�s

pretty hard to read� If we use cadr� caddr� and cadddr� we can make it somewhat more readable

by using one function call at each level of structure� 	cadr 	caddr 	cadddr foo���� But it�s still

clearer to write 	list�ref 	list�ref 	list�ref foo �� �� ��

or �indented

	list�ref 	list�ref 	list�ref foo ��

��

��

list�ref and list�tail are much more convenient than things like caddr when the indexes

into a list vary at run time� For example� we might use an index variable i �or some other expression

that returns an integer to pick out the ith member of a list� 	list�ref foo i�� Writing this with

car and cdr would require writing a loop or recursion to perform n�� cdr�s and a car�

��
This is the end of Hunk N

At this point
 you should go back to the previous chapter and
read Hunk O before returning here and continuing this tutorial�
��

�Go BACK to read Hunk O� which starts at Section ��� �Tail Recursion�� page ���

��� Basic Programming Examples
Hunk P�

� From here on� the text is not structured as a type�along tutorial interleaved with Chapter

�� However� it�s a good idea to experiment with the examples interactively in a running Scheme

system � �

Chapter �� Using Scheme �A Tutorial ���

In this section� I�ll give a few simple examples of Scheme programming� mostly using recursion

to manipulate lists without side e�ects� �Later� I�ll revisit some of these examples� and show how

to implement them more e�ciently� using tail recursion� but still without side e�ects�

I�ll show how to implement simple versions of some standard Scheme procedures� this may help

you understand what those procedures do� and how to use them� �Later� I�ll return to some of

these examples and show how to implement more general versions� I�ll also give some examples

that aren�t standard Scheme procedures� but illustrate common idioms�

Some of these examples use higher�order procedures	procedures which operate on procedures	

and toward the end of the section� I�ll discuss currying� a technique for creating specialized versions

of procedures in a particular context�

You should get used to thinking recursively� and avoiding side e�ects most of the time� It�s often

easier to write things recursively than using normal loops and side e�ects�

����� An Error Signaling Routine

It�s often useful to put error�checking code in your procedures� to make sure that their arguments

satisfy whatever preconditions they need to operate correctly�

In a dynamically�typed language� this is often good for making sure that you detect errors where

pass values to a procedure that can�t handle arguments of those types� Usually when you do that�

you�ll
nd out soon enough� because you�ll perform an illegal operation �like taking the car of a

number� and Scheme will detect the error and tell you�

Scheme doesn�t yet have a standard error signaling routine� but we can make a simple portable

one�

� In fact� if you don�t have one� you�ll get an error signaled anyway� in the form of an unbound

variable exception when you try to call error � � ���� �

� We should discuss portable and system�speci
c error�handling in class� �

Chapter �� Using Scheme �A Tutorial ���

����� length

length is the standard Scheme procedure that returns the length of a list� It only counts the

elements along the spine of the list �down the cdr�s�

It�s easy to do this using recursion� The length of a list is � if the list is empty� and otherwise

it�s � plus the length of the rest of the list� Here�s the easiest way to de
ne length�

	define 	length lis�

	if 	null� lis�

�

	� � 	length 	cdr lis�����

Note that in this example� I�ve used lis as the name of a list argument� rather than list�

That�s because there�s a standard Scheme procedure named list� which will be shadowed by any

local variable with the same name� �This is because of Scheme�s uni
ed namespace� list seems to

be the only identi
er for which this is commonly a problem�

The above de
nition of length is not tail recursive	after calling itself� there must be a return

so that � can be added to the value and returned�

Later we�ll show a more e�cient� tail�recursive version of length� and a more general procedure

called reduce that can be used to construct a variety of procedures whose basic algorithm is similar�

����� Copying Lists

There are two common senses of copying� shallow copying� and deep copying� A shallow copy

makes a copy of one object� and the copy has pointers to the same objects that the original did�

A deep copy copies not only the top�level objects in a data structure� but the ones below that�

and so on recursively� so that a whole new data structure is created�

For lists� which are made up of more than one object� it is often useful to copy the spine of the

list� i�e�� doing a deep copy along the cdr�s only� We typically think of a list as being like a special

kind of object� even though it�s really a sequence of pair objects� It�s therefore natural to copy

�just the list��

Chapter �� Using Scheme �A Tutorial ���

If we just want to do a shallow copy� we can de
ne pair�copy to copy a pair� without copying

anything else�

In these examples� I�ll assume we only want to copy list structure	that is a connected set of

pairs� Whenever we come to something that�s not a pair� we stop copying and the copy shares

structure with the original� �These aren�t standard Scheme procedures�

Here�s a truly shallow copy� just copying a single pair�

	define 	pair�copy pr�

	cons 	car pr� 	cdr pr���

If we want to do a deep copy� we can use recursion to copy car or cdr values that are also pairs�

The following code for lists�deep�copy assumes that the structure to be copied is a tree of pairs�

�If there is any shared structure� it will be copied each time it is reached� If there�s a directed cycle�

deep�copy will loop in
nitely�

	define 	lists�deep�copy thing�

	if 	pair� thing�

	cons 	lists�deep�copy 	car thing��

	lists�deep�copy 	cdr thing���

thing��

To copy the spine of a list� we can use this

	define 	list�copy lis�

	cond 		pair� lis�

	cons 	car lis�

	list�copy 	cdr lis����

		null� lis�

#	����

� need to discuss error checking� tastefulness����

����	 append and reverse

Two handy operations on lists are append and reverse� both are standard Scheme procedures�

Chapter �� Using Scheme �A Tutorial ���

append takes any number of lists as arguments� and returns a list with all of their elements�

reverse takes a list and returns a new list� with the same elements but in the opposite order�

Note that like most Scheme procedures� neither of these procedures is destructive	each creates

a new list without modifying its argument�

����	�� append

Here�s a simple two�argument version of append�

	define 	append� lis� lis��

	if 	null� lis��

lis�

	cons 	car lis��

	append� 	cdr lis�� lis�����

Note that append� copies its
rst list argument� but the result simply shares a pointer to the

last list argument	the last list is not copied� so the result shares structure with that list� This is

also true of the standard Scheme function append� which can take any number of lists as arguments�

The
rst n�� lists are copied� but the last is shared�

Suppose we have de
ned two lists� foo and bar� like this�

	define foo #	x y z��

	define bar #	a b��

	define baz 	append bar foo��

The result will be that baz shares structure with foo� but not with bar� Changes to the list via

foo will also be visible via baz�

Chapter �� Using Scheme �A Tutorial ���

��

� �

$�� �

����� ��������� ��������� ��������� �

foo � �������� � � ��������� � � ���������� � � � � �

����� ��������� ��������� ��������� �

� � � �

$�� $�� $�� �

x y z �

�

�

����� ��������� ��������� �

bar � �������� � � ��������� � � � � �

����� ��������� ��������� �

� � �

$�� $�� �

a b �

��$ ��$ �

� � �

����� ��������� ��������� �

baz � �������� � � ��������� � � ������������������������

����� ��������� ���������

� give code for full�blown append� using dot notation for variable arity arg list� Do it later� fwd

ref from here� �

����	�� reverse

reverse returns a reversed copy of a list�

There�s an easy �but slow way to de
ne reverse in terms of append� We just take the
rst

element o� the list� reverse the rest of the list� and append the
rst element to the end�

	define 	reverse lis�

	if 	null� lis�

#	�

	append 	reverse 	cdr lis��

	list 	car lis�����

Chapter �� Using Scheme �A Tutorial ���

Think about how this works� reverse recurses down the list� calling itself on the cdr of the list

at each recursive step� until the recursion stops at the end of the list� �This last call returns the

empty list� which is the reverse of the empty list� At each step� we use car to peel o� one element

of the list� and hold onto it until the recursive call returns�

The reversed lists are handed back up through the returns� with the cars being slapped on the

rear of the list at each return step� We end up constructing the new list back�to�front on the way

up from the recursion�

There are two problems coding reverse this way� and later I�ll show better versions� �They�ll

still be recursive� and won�t use loops or assignment�

The
rst problem is that each call to append takes time proportional to the length of the list

it�s given� �Remember that append has to copy all of the elements in the
rst list it�s given� We

have to copy the �rest� of the list �using append starting at each pair in the list� On average� we

copy half the list at a given recursive step� so since we do this for every pair in the list� we have an

n�squared algorithm�

Another problem is that we�re doing things on the way back up from recursion� which turns out

to be more expensive than doing things on the way down� As I�ll explain in a later chapter� Scheme

can do recursion very e�ciently if everything is done in a forward direction	it can optimize away

all but one of the returns� �Luckily� this is easy to do�

����� map and for�each

map and for�each are used to apply a procedure to elements of lists� They�re good for coding

repetitive operations over sets of objects�

������� map

map takes a procedure and applies it to the elements of a list �or corresponding elements of a

set of lists� returning a list of results�

For example� if we want to double the elements of a list� we can use map and the double

procedure we de
ned earlier�

Chapter �� Using Scheme �A Tutorial ���

Scheme�	map double #	� � ���

	� � ��

If the procedure we�re calling takes more than one argument� we can pass two lists of arguments

to map� For example� if we want to add corresponding elements of two lists� and get back a

corresponding list of their sums� we can do this�

Scheme�	map � #	� � �� #	� � ���

	� %�

Right now� we�ll just write a simpli
ed version of map� which takes one list of values and applies

a one�argument procedure to them�

	define 	map proc lis�

	cond 		null� lis�

#	��

		pair� lis�

	cons 	proc 	car lis��

	map proc 	cdr lis������

Notice that map may construct a list of results front�to�back� or back�to�front� depending on the

order of the evaluation of the arguments to cons� That is� it may apply the mapped procedure on

the way down during recursion� or on the way back up� �This is allowed by the Scheme standard	

the order of the results in the resulting list corresponds to the ordering of the argument list�s� but

the dynamic order of applications is not speci
ed�

������� for�each

Like map� for�each applies a procedure to each element of a list� or to corresponding elements

of a set of lists� Unlike map� for�each discards the values returned by all of the applications except

the last� and returns the last value� �The applications are also guaranteed to occur in front�to�back

list order� This is sort of like what a begin expression does� except that the �subexpressions� are

not textually written out	they�re applications of a
rst�class procedure to list items�

Like begin� for�each is used to execute expressions in sequence� for e�ect rather than value�

except that the last value may be useful�

� give code �

Chapter �� Using Scheme �A Tutorial ���

����� member and assoc� and friends

The standard Scheme procedures member and assoc are used for searching lists� I�ll show how

they can be implemented in Scheme� even though every Scheme system includes them�

Each of these procedures has two alternative versions� which use di�erent equality tests �eq� or

eqv� when searching for an item in list�

������� member� memq� and memv

member searches a list for an item� and returns the remainder of the list starting at the point

where that item is found� �That is� it returns the pair whose car refers to the item� It returns �f

if the item is not in the list�

For example� 	member � #	� � � ��� returns 	� ��� and 	member #foo #	bar baz quux�� re�

turns �f�

Lists are often used as sets� and member serves nicely as a test of set membership� If an item

is not found� it returns �f� and if it is� it returns a pair� Since a pair is a true value� the result of

member can be used like a boolean in a conditional�

Since member returns the �rest� of a list� starting with the point where the item is found� it

can also be particularly useful with ordered lists� by skipping past all of the elements up to some

desired point� and returning the rest�

	define 	member thing lis�

	if 	pair� lis�

	if 	equal� 	car lis� thing�

lis

	member thing 	cdr lis�����

Note that member uses the equal� test �data structure equivalence when searching� This makes

sense in situations where you want same�structured data structures to count as �the same�� �For

example� if you�re searching a list of lists� and you want a sublist that has the same structure as the

target list to count as �the same�� Note that if the elements of the list are circular data structures�

member may loop in
nitely�

Chapter �� Using Scheme �A Tutorial ���

If you want to search for a particular object� you should use memq�� which is like member except

that it uses the eq� test� and may be much faster�

If the list may include numbers� and you want copies of the same number to count as �the

same�� you should use memv�

������� assoc� assq� and assv

assoc is used to search a special kind of nested list called an association list� Association lists

are often used to represent small tables�

An association list is a list of lists� Each sublist represents an association between a key and a

list of values� The car of the list is taken as the key
eld� but the whole list of values is returned�

�Typically� an association list is used as a simple table to map keys to single values� In that

case� you must remember to take the cadr of the sublist that assoc returns�

Some example uses�

Scheme�	assoc #julie #		paul august ��� 	julie feb %� 	veronique march �&���

	julie february %�

Scheme�	assoc #key� #		key� val�� 	key� val�� 	key� val����

	key� val��

Scheme�	cadr 	assoc #key� #		key� val�� 	key� val�� 	key� val�����

val�

Scheme�	assoc #	feb %�

#			aug �� maggie phil� 		feb %� jim heloise� 		jan �� declan���

		feb %� jim heloise�

And the code�

Chapter �� Using Scheme �A Tutorial ���

	define 	assoc thing alist�

	cond 		pair� alist��

	if 	equal� 	car 	car alist�� thing�

	car alist�

	assoc thing 	cdr alist���

	�t �f���

Like member� assoc uses the equal� test when searching a list� This is what you want if �and

only if you want same�structured data structures to count as �the same��

assq is like assoc� but uses the eq� test� This is the most commonly�used routine for searching

association lists� because symbols are commonly used as keys for association lists� �The name assq

suggests �associate using the eq� test��

If the keys may be numbers� assv� should probably be used instead� It considers � numbers

the same� but otherwise tests object identity� like eq�� �The name assv suggests �associate using

the eqv� test��

����� Procedure Specialization� Composition� and Currying

������� Procedure Specialization

Suppose that we are writing a program where we need to take a list of numbers and produce a

corresponding lists with numbers ten times as big�

Notice that we already have a procedure� map� that can iterate over a list� apply a function to

each item� and return the list of function values� We also have a multiplication procedure� � that

can multiply numbers by any value we want�

We can�t just write 	map � some�list�� though� because when map iterates over a single list� it

expects a procedure that takes exactly one argument� and � takes two arguments� Somehow� we

need to supply the argument �� to each of the calls map makes to ��

What we need is a one�argument function that multiplies its argument by ten� We could de
ne

our own multiplication�by�ten procedure� ���� and then use map to apply it to the elements of

some�list�

Chapter �� Using Scheme �A Tutorial ���

	define 	��� number�

	� �� number��

	map ��� some�list�

Here we�ve specialized � to create ���	we�ve taken a function with some number of arguments�

and produced a function with fewer arguments� which is equivalent to calling the original procedure

with the missing argument always the same�

If ��� is only used in one place� there�s really no need to create a named procedure	we can

just use a lambda expression to create the procedure where we need it� at the call to map�

	map 	lambda 	number�

	� �� number��

some�list�

Here we create an anonymous procedure that multiplies its argument by ��� and pass that

procedure and a list to map� which will map the procedure over the list and return the corresponding

list of results�

It is often a good idea to design procedures with specialization in mind�

Consider the similarities between member� memv� and memq� All of them do almost the same

thing� with the di�erence being which equality test they use during a search�

We can de
ne a general procedure� mem� which expresses the similarities between these proce�

dures� and then specialize that procedure�

Our general procedure will look like member� except that it will take an argument saying which

test to use� In Scheme� this is easy	we can simply hand it a
rst�class procedure like equal� or

eq�� or any other test we want to use� and have it call that procedure to perform the test�

	define 	mem test�proc thing lis�

	if 	pair� lis�

	if 	test�proc 	car lis� thing�

lis

	mem test�proc thing 	cdr lis�����

Chapter �� Using Scheme �A Tutorial ���

To get the e�ect of 	member some�key some�list�� we can write 	mem equal� some�key some�

list��

Note that here we�re not calling equal�� we�re just passing the value of the variable equal�

�i�e�� the procedure
rst�class procedure object equal� to mem� mem receives this value when the

argument variable test�proc is bound� and can call it by that name�

�In the ��� example� we specialized � with data	the number ��	but here we�re specializing

mem with a procedure� The same technique works� because procedures are data objects� and can

be passed as arguments like any other data� then called as procedures�

If Scheme didn�t provide member� we could easily de
ne it by specializing mem	we simply de
ne

member to call mem� but always pass equal� as the
rst argument�

	define 	member thing lis�

	mem equal� thing lis��

Likewise� we could de
ne memq and memv by specializing mem with eq� and eqv�� respectively�

This kind of function specialization is particularly useful when you have a pattern for a proce�

dure� but may need arbitrary variants of it in the future�

For example� suppose you want to search a list of lists� and you want your search routine to

return the
rst sublist whose
rst two elements match a particular two�element list� �This might

be an ordered list of birthdays� and you could be searching for the part of the list that starts with

a particular month of a particular year�

You might search the list for any list whose
rst elements are �%�� and December� by handing

it a target list 	�%�� December�� like this�

	mem�first�two� #	�%�� December�

#		�%�� January �� �Susan��

	�%�� March �& �Edward��

	�%�� March �% �Selena��

	�%�� December �� �Anton��

	�%�� January & �Booker�����

and get back the result

Chapter �� Using Scheme �A Tutorial ���

		�%�� December �� �Anton��

	�%�� January & �Booker�����

member� memq� and memv are useless for this� but it�s pretty easy with mem� First we de
ne a

match predicate for our purpose�

	define 	first�two�eqv� target thing�

	and 	eqv� 	car target� 	car thing��

	eqv� 	cadr target� 	cadr thing����

Then we curry mem with that predicate to create our search procedure�

	define 	mem�first�two� thing lis�

	mem first�two�eqv� thing lis��

If first�two�eqv� is only likely to be used in mem�first�two� we can put it inside mem�first�

two� as a local procedure� instead of leaving it hanging out where it can be called from other

procedures� This is a good idea for a procedure that is so specialized that it�s unlikely to be useful

in any other way	especially if you�re sure it works for what you designed it for� but think it may

be tricky to use for slightly di�erent purposes� �For example� we�ve chosen to use the eqv� test for

matching list elements� but for some purposes this might be the wrong choice�

	define 	mem�first�two thing lis�

	let 		first�two�eqv� 	lambda 	target thing�

	and 	eqv� 	car target� 	car thing��

	eqv� 	cadr target� 	cadr thing������

	mem first�two�eqv� thing lis���

In this routine� first�two�eqv� is only called from one place	the call to mem� Rather than

de
ning it as a named procedure� using letrec and lambda� we can simply use the lambda expres�

sion at the one place the procedure is needed�

	define 	mem�first�two thing lis�

	mem 	lambda 	target thing�

	and 	eqv� 	car target� 	car thing��

	eqv� 	cadr target� 	cadr thing����

target

lis��

Chapter �� Using Scheme �A Tutorial ���

This idiom is very common in situations where you need a small procedure in exactly one place�

Likewise� if mem�first�two itself is only useful in one place� it would be reasonable to avoid

making it a procedure at all� and instead to simply call mem from that place�

���

	mem 	lambda 	target thing�

	and 	eqv� 	car target� 	car thing��

	eqv� 	cadr target� 	cadr thing����

target

lis�

���

�� Discussion and Review

Chapter �� Writing an Interpreter ���

� Writing an Interpreter

In this Chapter� I�ll show a simple interpreter for a subset of Scheme� written in Scheme�

I�ll start out with a very simple interpreter for a tiny subset of Scheme� which only understands

simple arithmetic expressions�

Then I�ll improve the interpreter in variety of ways�

In a later chapter� we�ll return to this interpreter and add macros� �blah blah blah��� �

��� Interpretation and Compilation

Programming languages are usually implemented by interpreters or compilers� or some mix of

both� In reality� almost all language implementations are a mix of both� to at least a small degree�

and the line between them is surprisingly fuzzy�

A pure interpreter reads the source text of a program� analyzes it� and executes it as it goes�

This is usually very slow	the interpreter spends a lot of time analyzing strings of characters to

gure out what they mean� A pure interpreter must recognize and analyze each expression in the

source text each time it is encountered� so that it knows what to do next� This is pretty much how

most command shell languages work� including UNIX shells and Tcl�

A pure compiler reads the source text of a program� and translates it into machine code that

will have the e�ect of executing the program when it is run� A big advantage of compilers is that

they can read through and analyze the source program once� and generate code that you can run

to give the same e�ect as interpreting the program� Rather than analyzing each expression each

time they encounter it� compilers do the analysis once� but record the actions an interpreter would

take at that point in the program�

In e�ect� a compiler is a weird kind of interpreter� that �pretends� to interpret the program�

and records what an interpreter would do� It then goes through its record of actions the interpreter

would take� and spits out instructions whose e�ect is the same as what the interpreter would have

done� Most of the decision�making that the interpreter does	like
guring out that an expression is

an assignment expression� or a procedure call	can be done at compile time� because the expression

is the same each time it�s encountered in running the program�

Chapter �� Writing an Interpreter ���

The compiler�s job is to do the work that�s always the same� and spit out instructions that will

do the �real work� that can only be done at runtime� because it depends on the actual data that

the program is manipulating� For example� an if statement is always an if statement each time

it�s encountered� so that analysis can be done once� But which branch will be taken depends on the

runtime value of an expression� so the compiler must emit code to test the value of the expression�

and take the appropriate branch�

Most real interpreters are somewhere in between pure interpreters and compilers� They read

through the source code for a program once� and translate it into an �intermediate representation�

that�s easier to work with	a data structure of some kind	and then interpret that� Rather than

stepping through strings of source text� they step through a data structure that represents that

source text in a more convenient form� which is much faster to operate on� That is� they do some

analysis once� while converting the source text into a data structure� and the rest as they execute

the program by stepping through the data structure�

In this chapter� I�ll demonstrate Scheme programming by showing a simple a simple interpreter

for a small subset of Scheme� in Scheme� In the next chapter� I�ll present a slightly fancier interpreter

that implements all of the really important parts of Scheme� There are four good reasons for using

a Scheme interpreter as an example Scheme program�

�� A simple interpreter really is simple� but it can show o� some of the handy features of Scheme�

It�s a good example of Scheme programming�

�� Most serious programs include some kind of command interpreter� so every programmer should

know how to write a decent one� Often� the command interpreter has a tremendous impact on

the usability and power of a system� and too many programs have bad ones�

�� Understanding how a Scheme interpreter works may clarify language issues� It gives you a

nice� concrete� understanding of what Scheme does when it encounters an expression� so you

know what your programs will do	it�ll be obvious when you need a quote� or parentheses�

and when you don�t�

�� Every programmer should understand the basics of how a compiler works� Understanding a

Scheme interpreter gets you half�way to understanding a Scheme compiler� A Scheme compiler

is really very much like a Scheme interpreter	it analyzes Scheme expressions and
gures out

what to do� The main di�erence between an interpreter and a compiler is just that when an

interpreter
gures out what to do� it does it immediately� while a compiler records what to do

when you run the program later�

Chapter �� Writing an Interpreter ���

��� Implementing a Simple Interpreter

In this section� we�ll use Scheme to implement an interpreter for a tiny subset of Scheme	just

simple arithemetic expressions� The interpreter we�ll show is simple� but it�s a real interpreter	it

works on the same principles as many real Scheme systems� In the next chapter� we�ll show how a

slightly more complicated interpreter which implements most of Scheme�s important features� and

the skeleton of a compiler for Scheme�

The interpreter is a good example for learning Scheme programming� because it makes heavy

use of recursion	the processes of reading and evaluation are naturally recursive� As you�ll see�

the code is also an example of mostly�functional programming �with very few side e�ects� using

recursion in the natural way avoids the need for side e�ects� because data structures are generally

created at the right times� rather than being created too early and having to be updated later�

Our interpreter will use Scheme�s built�in read procedure to accept input in the form of s�

expressions� i�e�� expressions represented as standard Scheme data structures such as symbols�

numbers� and possibly nested lists of those consituents� �Recall that���� S�expressions can be

simple� as in the case of symbols� or complex� as in the case of nested lists�

	���� The Read�Eval�Print Loop

�This section could be skimmed if you�re not interested in the read�eval�print�loop� which is just

a simple command interpreter that acts as a �front end� to the evaluator�

When you�re interacting with Scheme by typing text� you�re interacting with a Scheme procedure

called the read�eval�print loop� This procedure just loops� accepting one command at a time�

executing it� and printing the result�

The three steps at each iteration of the loop are�

�� calling read to an expression from the keyboard input bu�er� constructing a data structure to

represent it�

�� calling eval interpreter to �interpret� the expression�

�� calling write to print the resulting value so that the user can see it�

You can write your own read�eval�print loop for your own programs� so that users can type

in expressions� and you can interpret them any way you want� Later� I�ll show how to write an

Chapter �� Writing an Interpreter ���

interpreter� and this will come in handy� You can start up your read�eval�print loop �by typing

in 	rep�loop�� and it will take over from the normal Scheme read�eval�print loop� interpreting

expressions your way�

Here�s a very simple read�eval�print loop�

	define 	rep�loop�

	display �repl��� � print a prompt

	write 	eval 	read��� � read expr�
 pass to eval
 write result

	rep�loop�� � tail call to do it again

We�ve coded the iteration recursively� rather than using a looping construct� The procedure is

tail�recursive� since all it does at the end is call itself� Remember that Scheme is smart about this

kind of recursion� and won�t build up procedure activation information on the stack and cause a

stack over�ow� You can do tail recursion all day� Since nothing happens in a given call to the

procedure after the tail�call� Scheme can avoid returning to it at all� and avoid saving any state to

return to�

The above read�eval�print loop isn�t very friendly� because it loops in
nitely without giving you

any chance to break out of it� Let�s modify it to allow you to stop the tail recursion by typing in

the symbol halt�

	define 	rep�loop�

	display �repl��� � print a prompt

	let 		expr 	read��� � read an expression
 save it in expr

	cond 		eq� expr halt� � user asked to stop�

	display �exiting read�eval�print loop��

	newline��

	�t � otherwise

	write 	eval expr�� � evaluate and print

	newline�

	rep�loop����� � and loop to do it again

Notice that this is still tail recursive� because the branch that does a the recursive call doesn�t

do anything else after that�

This read�eval�print loop could be improved a little� By using the symbol halt as the command

to tell the loop to stop� we prevent people from being able to evaluate halt as an expression� We

Chapter �� Writing an Interpreter ���

could get around this by ensuring that the halt command doesn�t have the syntax of any expression

in the language� but we won�t bother right now�

Another improvement would be to make it possible to use di�erent interpreters with the same

read�eval�print loop� The rep�loop procedure above assumes that it should call a procedure named

eval to evaluate an expression� We�d like to write a rep�loop that works with di�erent evaluators�

so instead of having it call eval by name� we�ll hand it an argument saying which evaluator to use�

Since procedures are
rst class� we can just hand it a pointer to the evaluation procedure�

	define 	rep�loop our�eval�

	display �repl��� � print a prompt

	let 		expr 	read��� � read an expression
 save it in expr

	cond 		eq� expr #exit� � user asked to stop�

	display �exiting read�eval�print loop��

	newline��

	�t � otherwise

	write 	our�eval expr�� � evaluate and print

	rep�loop our�eval����� � and loop to do it again

Here we just made three changes� We added an argument our�eval� which is expected to be a

procedure� Then we changed the call to eval to call our�eval� i�e�� whatever evaluator was given�

Then we changed the recursive call to rep�loop to pass that argument on to the next recursive

call�

	���� The Reader

�Note� this section could be skimmed if you�re not interested in how the reader works	it is just

a front end to the evaluator� where the interesting work is done�

We won�t write our own reader for our interpreter� but I�ll sketch how the reader works�

�Our interpreter will just snarf the reader from the underlying Scheme system we�re implement�

ing it in� but it�s good to know how we could write a reader� and it�s a nice example of recursive

programming�

The reader is just the procedure read� which is written in terms of a few lower�level procedures

that read individual characters and construct tokens� which read puts together into nested data

Chapter �� Writing an Interpreter ���

structures� A token is just a fairly simple item that doesn�t have a nested structure� For example�

lists nest� but symbol names don�t� strings don�t� and numbers don�t�

The low�level routines that read uses just read individual tokens from the input �a stream of

characters� These tokens include symbols� strings� numbers� and parentheses� Parentheses are

special� because they tell the reader when recursion is needed to read nested data structures�

�I haven�t explained about character I�O� but don�t worry	there are Scheme procedures for

reading a character of input at a time� testing characters for equality� etc� For now� we�ll ignore

those details and I�ll just sketch the overall structure of the reader�

Lets assume we have a simple reader that only reads symbols� integers� and strings� and �possibly

nested lists made up of those things� It�ll be pretty clear how to extend it to read other kinds of

things�

	������ Implementing read

read uses recursion to construct nested lists while reading through the character input from left

to right�

When it sees a left parenthesis� it calls an auxiliary procedure we�ll call read�list to read the

elements of a list�

read and read�list are mutually recursive� read�list reads the elements of a list by calling

read �if the list elements are simple tokens� which may call read�list recursively to read nested

lists�

Notice that hitting a right parenthesis is the termination condition for the recursion� If we�re

reading a sublist of a list� and hit a right parenthesis� read�list recognizes that as the sign to

stop� and return a complete �nested list to read�

Here�s a slightly oversimpli
ed version of read� �The main oversimpli
cation is that we�ve left

out any error�checking code� We assume that what we�re reading is a legal textual representation

of a Scheme data structure� We also haven�t dealt with reading from
les� instead of the standard

input� or what to do when reaching the end of a
le�

�Our little reader will use the standard Scheme procedure read�char to read one character of

input at a time� and also the predictate procedures char�alphabetic� and char�digit�� these

Chapter �� Writing an Interpreter ���

tell whether a character represents a letter or a number� We�ll also use the character literals $�

and $�� which represent the double quote character and the left parenthesis character�

� this code is o� the top of my head and needs to be debugged �

	define 	read�

	let 		first�char 	read�char���

	if 	eq� first�char �$	� � char a left parenthesis�

	read�list�

	cond 		char�alphabetic� first�char�

	read�symbol first�char��

		char�digit� first�char�

	read�number first�char��

		eq� first�char �$�� � char a double quote�

	read�string������

Notice that the
rst if is the recursion test� If we see a left parenthesis� which is a special token�

and we call read�list to read a list� read list can call read again to read the elements of the

list� so read is indirectly recursive�

If we�re not reading a list� we call any of several auxiliary procedures to read tokens�

read�symbol� If the character we read is a letter� we�re reading a symbol� so we call read�

symbol to
nish reading it� �We pass it the character we read� since it�s the
rst character

of the symbol�s print name� read�symbol �not shown just reads through more characters�

saving them until it hits a special token �space or parenthesis� When it
nishes reading the

whole print name of the symbol� it checks the table of symbols to see if there�s already a symbol

by that name� If so� it just returns a pointer to it� If not� it constructs a symbol by that name�

adds it to the table� and returns a pointer to that�

read�number� If the character we read is a digit� we�re reading a number� so we call read�

number� �We pass it the
rst character we read� since that�s the
rst digit of the number� read�

number just reads through successive characters� saving them until it hits a special token such

as a space or parenthesis� Then it calls another procedure� string��numberwhich converts the

sequence of digit characters into a binary number in the usual Scheme number representation�

and returns that�

read�string� If the character we read is a double quote ��� we�re reading a string� so we

call read�string� �We don�t have to pass it the character we read� since the double quote

isn�t actually part of the string� It�s done its job by telling us that we�re reading a string�

Chapter �� Writing an Interpreter ���

read�string just reads through characters� saving them until it hits another double quote� It

then calls another procedure that constructs a string with that sequence of characters�

	������ Implementing read�list

Here�s a slightly oversimpli
ed version of read�list� �Again� the main oversimpli
cation is that

we don�t check for illegal syntax� like extra closing parentheses�

� need to explain peek�character �

� this code is o� the top of my head and needs to be debugged �

	define 	read�list list�so�far�

	let 		next�char 	peek�char���

� if we hit a right parenthesis

	if 	eq� next�char �$��

� then return list we#ve read
 reversing it into proper order

	reverse list�so�far�

� else read next item and call self recursively to read rest

	cons 	read�

	read�list list�so�far�����

Notice that we�ve coded read�list recursively in two ways�

We code the iteration that reads successive items in the list as a recursion� passing the list so

far as an argument to the recursive call� � This is not tail�recursive� but we could
x it� �

We read list elements by calling read� and then cons them onto the list so far� and pass that

to a recursive call to read�list� This constructs a list that�s backwards� because we push later

elements onto the front of the list� When we hit a right parenthesis and end a recursive call� we

reverse the list we�ve read� to put it in the proper order�

	������ Comments on the Reader

The reader is really a simple kind of recursive descent parser� A parser converts a sequence of

tokens into a syntax tree that describes the nesting of expressions or statements� It is a �top�

Chapter �� Writing an Interpreter ���

down� parser� because it recognizes high�level structures before lower�level ones �e�g�� it recognizes

the beginning of a list before reading and recognizing the tokens and sublists inside it���

It converts a linear sequence of characters into a simple parse tree�

�If you�re familiar with standard compiler terminology� you should recognize that read performs

lexical analysis �a�k�a� scanning or tokenization using read�string� read�symbol� and read�

number� It performs predictive recursive�descent parsing via the mutual recursion of read and

read�list�

Unlike most parsers� the data structure read generates is a data structure in the Scheme lan�

guage� rather than a data structure internal to a compiler or interpreter� This is one of the nice

things about Scheme	there�s a simple but �exible parser you can use in your own programs� You

can use it for parsing data as well as programs�

When implementing the Scheme language� that�s not all there is to doing parsing� The reader

does the
rst part of parsing� translating input into s�expressions� The rest of parsing is done

during interpretation or compilation� in a very straightforward way� The rest of the parsing isn�t

much more complicated than reading� and is also done recursively��

� Unsurprisingly� a bottom�up parser would do the opposite	it would recognizes the smaller

consituents
rst� and then recognizes the larger groupings that enclose them�
� In the technical terminology of programming language processors� the reader is a predictive

parser for an LL grammar� It can parse s�expressions top�down in a single pass through the

sequence of tokens� without looking ahead more than one token� because it only needs to see

the next token to know what action to take� �E�g�� if it sees a left parenthesis� it immediately

�knows� that it is parsing a nested list�
� It�s often said that Lisp and Scheme have such a simple syntax that they �don�t need a parser��

but this is just false� Lisp and Scheme actually have $em two parsers� because their syntax has

a two levels� The �surface� syntax is parenthesized pre
x expressions� recognized by the reader�

but there is a �deeper� syntax that is recognized by the interpreter or compiler� which analyzes

s�expressions in the process of evaluating or compiling them�

As we�ll see when we get to macros� Scheme syntax is even more sophisticated than this� despite

its simplicity� Technically� Scheme has a $em transformational grammar that is not �context�free��

but is easy to parse� �If you don�t know what that means� don�t worry about it� Scheme is easy to

understand without knowing the fancy technical terms�

Chapter �� Writing an Interpreter ���

	���� Recursive Evaluation

The evaluator is the core of the interpreter	it�s what does all of the interesting work to evaluate

complicated expressions�

Evaluation is done recursively� We write code to evaluate simple expressions� and use recursion

to break down complicated expressions into simple parts�

I�ll show you a simple evaluator for simple arithmetic expressions� like a four�function calculator�

which you can use like this� given the read�eval�print�loop above�

Scheme�	repl math�eval� � start up read�eval�print loop w�arithmetic eval

repl��

�

repl�	� � ��

�

repl�	� 	� � �� 	� � ���

&

As before� the read�eval�print�loop reads what you type at the repl� prompt as an s�expression�

and calls math�eval�

Here�s the main dispatch routine of the interpreter� which
gures out what kind of expression

it�s given� and either evaluates it trivially or calls eval�combo to help�

	define 	math�eval expr�

	cond �� self�evaluating object� 	we only handle numbers�

		number� expr�

expr�

�� compound expression� 	we only handle two�arg combinations�

		and 	list� expr�

	eq� 	length expr� ���

	math�eval�combo expr��

	�t

	error �invalid expression� expr����

First math�eval checks the expression to see if it�s something simple that it can evaluate straight�

forwardly� without recursion�

Chapter �� Writing an Interpreter ���

The only simple expressions in our language are numeric literals� so math�eval just uses number�

to test whether the expression is a number� If so� it just returns that value� �Voila� We�ve

implemented self�evaluating objects�

If the expression is not simple� it�s supposed to be an arithmetic expression with an operator

and two operands� represented as a three element list� �This is the subset of Scheme�s combinations

that this interpreter can handle� In this case� math�eval calls eval�combo�

	define 	math�eval�combo expr�

	let 		arg� 	math�eval 	cadr expr���

	arg� 	math�eval 	caddr expr����

	cond 		eq� 	car expr� #��

	� arg� arg���

		eq� 	car expr� #��

	� arg� arg���

		eq� 	car expr� #��

	� arg� arg���

		eq� 	car expr� #��

	� arg� arg���

	�t

	error �Invalid operation in expr�� expr�����

eval�combo handles a combination �math operation by calling math�eval recursively to eval�

uate the arguments� checking which operator is used in the expression� and calling the appropriate

Scheme procedure to perform the actual operation�

	���	 A Note on Snar�ng and Bootstrapping

Two concepts worth knowing about language implementation are snarfing and bootstrapping�

Snar
ng is �stealing� features from an underlying language when implementing a new language�

Bootstrapping is the process of building a language implementation �or other system by using the

system to extend itself�

	���	�� Snar�ng

Our example interpreter implements Scheme in Scheme� but we could have written it in C or

assembly language� If we had done that� we�d have to have written our own read�eval�print loop�

Chapter �� Writing an Interpreter ���

and a bunch of not�very interesting code to read from the keyboard input and create data structures�

display data structures on the screen� and so on� Instead� we �cheated� by snar
ng those features

from the underlying Scheme system	we simply took features from the underlying Scheme system

and used them in the language we interpret� Our tiny language requires you to type in Scheme lists�

because it uses the Scheme read�eval�print to get its input and call the interpreter� If we wanted

to� we could provide our own read routine that reads things in a di�erent syntax� For example� we

might read input that uses square brackets instead of parentheses for nesting� or which uses in
x

operators instead of pre
x operators� �That is� the middle item in a three�element list would be

the operator name�

There are some features we didn�t just snarf� though	we wrote our own evaluation procedure

which controls recursive evaluation� For example� we use basic Scheme arithemetic procedures

to implement individual arithmetic operations� but we don�t simply snarf them� the interpreter

recognizes arithmetic operations in its input language� and maps them onto procedure calls in the

underlying language� We can change our language by changing those mappings� for example� we

could use the symbols sum� difference� product� and quotient instead of �� �� �� and �� Or we

could use the same names� but implement the operations di�erently� �For example� we might have

our own arithmetic routines that allow a representation of in
nity� and do something reasonable

for division by zero�

We also use recursion to implement recursion� when we recursively call eval� But since we

coded that recursion explicitly� we can easily change it� and do something di�erent� Our arithmetic

expressions don�t have to have the same recursive structure as Scheme expressions�

We could also implement recursion ourselves� As written� our tiny interpreter uses Scheme�s

recursion �stack� to implement it�s own stack	each recursive call to eval implements a recursive

call in our input language� We didn�t have to do this� We could have implemented our own stack

as a data structure� and written our interpreter as a simple non�recursive loop�

What counts as �snar
ng�� The term is a good one� but not clearly de
ned� We clearly just

snarfed the Scheme reader� but we�ve done something a little di�erent with recursion� We�ve done

something very di�erent with the interpretation of operator names�

	���	�� Bootstrapping and Cross�compiling

Implementing a programming language well requires attention to the
ne art of bootstrapping	

how much of the system do you have to build �by hand� in some lower�level system� and how much

can you build within the system itself� once you�ve got a little bit of it working�

Chapter �� Writing an Interpreter ���

Most Scheme systems are written mostly in Scheme� and in fact it�s possible �but not particularly

fun to implement a whole Scheme system in Scheme� even on a machine that doesn�t have a Scheme

system yet�

How are these things possible�

First� let�s take the simple case� where you�re willing to write a little code in another language�

You can write an interpreter for a small subset of Scheme in� say� C or assembler� Then you can

extend that little language by writing the rest of Scheme in Scheme	you just need a simple little

subset to get started� and then things you need can be de
ned in terms of things you already

have� Writing an interpreter for a subset of Scheme in C is not hard	just a little tedious� Then

you can use lambda to create most of the rest of the procedures in terms of simpler procedures�

Interestingly� you can also implement most of the de
ning constructs and control constructs of

Scheme in Scheme� by writing macros� which we�ll discuss later�

You can start out this way even if you want your Scheme system to use a compiler� You can

write the compiler in Scheme� and use the interpreter to run it and generate machine code� Now

you have a compiler for Scheme code� and can compile procedures so that they run faster than if

you interpreted them� You can take most of the Scheme code that you�d been interpreting� and

use the compiler to create faster versions of them� You then replace the old �interpreted versions

with the new �compiled versions� and the system is suddenly faster�

Once the compiler works� you can compile the compiler� so that $em it runs faster� After all�

a compiler is just a program that takes source code as input and generates executable code	it�s

just a program that happens to operate on programs� Now you�re set	you have a compiler that

can compile Scheme code that you need to run� including itself� and you don�t need the interpreter

anymore�

To get Scheme to work on a new system� without even needing an interpreter� you can $em

cross�compile� If you have Scheme working on one kind of machine� but want to run it on another�

you can write your Scheme compiler in Scheme� and have it run on one machine but generate code

for the new machine� Then you can take the executable code it generates� copy it onto the new

machine� and run it�

Most Scheme systems are built using tricks like this� For example� the RScheme system never

had an interpreter at all� Its compiler was initially run in a di�erent Scheme system �Scheme���

and used to compile most of RScheme itself� This code was then used to run RScheme with no

further assistance from another implementation�

Chapter �� Writing an Interpreter ���

The
rst Scheme system was built by writing a Scheme interpreter in Lisp� � or was it a compiler

rst� ��� blah blah ��� �

	���� Improving the Simple Interpreter

We can easily improve the little interpreter in lots of ways� � We should put the code in a
le

minieval�scm so people can experiment with it� Need to debug it
rst� of course� It�s changed since

the one I�ve used in class� �

First� we can add a toplevel binding environment� so we can have some variables� �Local

variables will be discussed in the next chapter� To make them useful� we need some special forms�

like define and �while we�re at it set�

We can also add a few more data types� for now� we�ll just add booleans�

Here�s what our new main dispatch routine looks like�

	define 	eval expr�

	cond �� variable reference

		symbol� expr�

	eval�symbol expr��

�� combination OR special form

		pair� expr�

	eval�list expr��

�� any kind of self�evaluating object

		self�evaluating� expr�

expr�

	�t

	error �Illegal expression� � expr����

Since we�re adding variables to our interpreter� symbols can be expressions by themselves now	

references to top�level variable bindings� We�ve added a branch to our cond to handle that� and a

helper procedure eval�symbol� �We�ll discuss how the variable lookup is done shortly�

We need to recognize two kinds of self�evaluating types now �and may add more later� so we

come up with a procedure self�evaluating� that covers both cases and can easily be extended�

Chapter �� Writing an Interpreter ���

	define 	self�evaluating� expr�

	or 	number� expr� 	boolean� expr���

We also need to recognize two basic types of compound expressions� combinations and special

forms� These �and only these are represented as lists� so we can use pair� as a test� and dispatch

to eval�list�

Here�s the code for eval�list� which just checks to see whether a compound expression is a

special form� and dispatches to eval�special�form if it is� and eval�combo if it�s not�

	define 	eval�list expr�

	if 	and 	symbol� 	car expr��

	special�form�name� 	car expr���

	eval�special�form expr�

	eval�combo���

We could use a cond to check whether symbols are special form names� but using member on a

literal list is clearer and easily extensible	you can just add names to the list�

	define 	special�form�name� expr�

	member #	if define set���

eval�special�form just dispatches again� calling a routine that handles whatever kind of special

form it�s faced with� �Later� we�ll see prettier ways of doing this kind of dispatching� using
rst�class

procedures� From here� we�ve done most of the analysis� and are dispatching to little procedures

that actually do the work�

� need to come back to this after discussing backquote	this would make a good example �

	define 	eval�special�form expr�

	let 		name 	car expr���

	cond 		eq� name #define�

	eval�define expr��

		eq� name #set�

	eval�set expr��

		eq� name #if�

	eval�if expr�����

Chapter �� Writing an Interpreter ���

Once the evaluator has recognized an if expression� it calls eval�if to do the work� eval�if

calls eval recursively� to evaluate the condition expression� and depending on the result� calls it

again to evaluate the �then� branch or the �else� branch� �One slight complication is that we may

have a one�branch else� so eval�if has to check to see if the else branch is there� If not� it just

returns �f�

	define 	eval�if expr�

	let 		expr�length 	length expr���

	if 	eval 	cadr expr��

	eval 	caddr expr��

	if 	� expr�length ���

	eval 	cadddr expr��

�f���

� note that what we�re doing includes parsing��� one�branch vs� two branch if� Should actually

be doing more parsing� checking syntax and signaling errors gracefully� E�g�� should check to see

that expr�length is a legal length� �

� Also note that we�re snar
ng booleans� and our if behaves like a Scheme if��� but we don�t

have to� We could put a di�erent interpretation on if� e�g�� only interpreting �t as a true value� �

For a toplevel binding environment� we�ll use an association list� �A more serious interpreter

would probably use a hash table� but a association list will su�ce to demonstrate the principles�

We start by declaring a variable to hold our interpreter�s environment� and initializing it with

an empty list�

	define envt #	��

To add bindings� we can de
ne a routine to add an association to the association list�

	define 	toplevel�bind name value�

	let 		bdg 	assoc name toplevel�envt���

�� if binding already exists
 put new value 	in cadr� of association

�� else create a new association with given value

	if bdg

	set�car 	cdr bdg� value�

	set envt

	cons 	list name init� envt�����

Chapter �� Writing an Interpreter ���

Recall that the elements of an association list are �associations�� which are just lists whose
rst

value is used as a key� We�ll use the second element of the list as the actual storage for a variable�

For example� an environment containing just bindings of foo and bar with values � and �

�respectively would look like 		foo �� 	bar ����

At the level of the little Scheme subset we�re implementing� we�d draw this environment this

way�

��������� 'envt(

envt � ���������������������

��������� foo � ��������� �

���������

bar � ��������� �

���������

This emphasizes the fact that these are variable bindings with values� i�e�� named storage loca�

tions� Notice that envt is a variable in the language we�re using to implement our interpreter� but

foo and bar are variables in the language the interpreter implements�

If we want to show how it�s implemented at the level of the Scheme we�re writing our interpreter

in� we can draw it more like this�

���������

envt � ������������������� ���������

��������� � � � ����������������������� � � � �

��������� ���������

� �

��������� ��������� ��������� ���������

� � � ������� � � � � � � � ������� � � � �

��������� ��������� ��������� ���������

� � � �

foo � bar �

Now we can add the four procedures we had in the math evaluator�

Chapter �� Writing an Interpreter ���

	toplevel�bind #� ��

	toplevel�bind #� ��

	toplevel�bind #� ��

	toplevel�bind #� ��

Again� we�re just snar
ng procedures straight from the Scheme we�re implementing our inter�

preter in� We put them in our binding environment under the same names�

Now we need accessor routines to get and set values of bindings for variable lookups and set

	define 	toplevel�get name�

	cadr 	assoc name envt���

	define 	toplevel�set name�

	set�car 	cdr 	assoc name envt����

� of course� these really should have some error checking �

Given this machinery� we can now write eval�define and eval�set� All they do is extract a

variable name from the define or set expression� and create binding for that name or update its

value�

	define 	eval�define expr�

	toplevel�bind 	cadr expr�

	eval 	caddr expr����

	define 	eval�set expr�

	toplevel�set 	cadr expr�

	eval 	caddr expr����

��� Discussion and Review

Chapter �� Environments and Procedures ���

� Environments and Procedures

��� Understanding let and lambda

����� let

One di�erence between C or Pascal blocks and Scheme let�s is that let variable bindings don�t

necessarily cease to exist when the let is exited� and the bindings therefore can�t be allocated on

a stack in the general case� �The reason for this will become clear when we talk about lambda and

closures�

One way to visualize the creation of block variables is to see it as the creation of a new table

mapping names to storage� like the toplevel environment in our interpreter�

Except for the new variables� the new environment �table is the same as the one that was in use

when the block was entered� We say that the let expression �extends� the �outer� environment

with bindings for the let variables�

Suppose we type a let expression at the Scheme prompt� �Assume we we�re just doing the usual

expression evaluation in the usual top�level environment�

Scheme�	let 		x ��� 	y ����

	� x y��

��

The interpreter maintains a pointer to the �current environment� when evaluating an expression�

This pointer always points to the environment the currently�executing code must execute in� i�e��

the variable bindings it must see for the variables it uses�

Before evaluating the let expression� Scheme�s environment pointer points to the top�level

environment� which contains the usual bindings holding the built�in Scheme procedures� plus any

top�level variables we�ve de
ned� Supposing we�ve de
ned a variable foo� we can draw the top�level

environement like this�

Chapter �� Environments and Procedures ���

������� ��������������

envt � ������������� car � ��������� ��proc �����

������� ��������������

� cons � ��������� ��proc �����

��������������

� � � ��������� ��proc �����

��������������

� � �

�

� � �

��������������

� foo � ��������� ��proc �����

��������������

�Here� we�ve drawn the environment as a simple table of names and bindings� It might actually

be implemented as an association list� as in our simple example interpreter� or more likely as a hash

table�

After entering the let and creating the bindings for x and y� the interpreter changes the en�

vironment pointer to point to the resulting new environment� This is typically implemented by

representing the environment as a chain of tables� rather than a simple table� The newest table is

searched
rst� and so on down the chain� to
nd the appropriate bindings� This environment chain

is used as a pointer�linked stack� for the most part� with new environments being pushed onto the

stack when a let is entered� and popped o� the stack when a let is exited�

Chapter �� Environments and Procedures ���

���������������

� car � ��������� ��proc �����

���������������

� cons � ��������� ��proc �����

���������������

� � � ��������� ��proc �����

���������������

� � �

�

� � �

���������������

� foo � ��������� ��proc �����

���������������

��$

�

�

�

������� ���������������

envt � �������������'scope(� � �

������� ���������������

� x � �� �

���������������

� y � �� �

���������������

The link that connects the two tables is called a scope link� It re�ects the nesting of naming

scopes in the program� In this case� when a variable is referenced inside the let� the search for a

binding begins at the new �small table� If it is not found� the search follows the scope link to the

next table and looks there� This can continue for as many levels as there are nested scopes in the

program�

While we�re executing in the new environment� its bindings shadow �hide any bindings of

variables with the same name in the outer environment� For example� if there�s a top�level variable

named x bound in the top�level environment� they won�t be seen by code executing in the let

environment�

When we exit the let� the current environment pointer is set back to point to the same envi�

ronemnt as before entering the let� In the usual case� that environment becomes garbage because

there are no pointers to it� and the garbage collector will eventually reclaim its space�

Chapter �� Environments and Procedures ���

����� lambda

In Scheme� you can create anonymous �unnamed procedures any time you want� using the

lambda special form�

� Say this here� or in Intro chapter�� A better name for lambda might be make�procedure� ��� �

For example� suppose you want to write a piece of code that needs to double the values of the

items in a list� You could do what we did before� and de
ne a named double procedure� but if you

only need to use the procedue in one place� it�s easier to use an anonymous procedure created with

lambda�

Instead of writing

	define 	double x�

	� x x��

and then using it like this

���

	map double mylist�

���

You can simply de
ne it where it�s used� using lambda�

���

	map 	lambda 	x� 	� x x�� mylist�

���

This can help avoid cluttering your code with lots of auxiliary procedures� �Don�t overdo it�

though	if a procedure is nontrivial� it�s good to give it a name that re�ects what it does� This is

very convenient when using higher�order procedures like map� or higher�order procedures you come

up with for your own programs�

� As we�ll see in a little while� lambda has some very interesting properties that make it more

useful than it might seem right now� �

Chapter �� Environments and Procedures ���

� point out that variable arity works with lambda arg lists just like with de
ne arg lists �

������� define and lambda

� Have we already said that procedure de
ne is equivalent to variable de
ne plus lambda� If

not� say so here� Either way� maybe explain more clearly here� �

������� Currying

������� Procedures are Closures

Scheme procedure�s aren�t really just pieces of code you can execute� they�re closures�

A closure is a procedure that records what environment it was created in� When you call it� that

environment is restored before the actual code is executed� This ensures that when a procedure

executes� it sees the exact same variable bindings that were visible when it was created	it doesn�t

just remember variable names in its code� it remembers what storage each name referred to when

it was created�

Since variable bindings are allocated on the heap� not on a stack� this allows procedures to

remember binding environments even after the expressions that created those environments have

been evaluated� For example� a closure created by a lambda inside a let will remember the let�s

variable bindings even after we�ve exited the let� As long as we have a pointer to the procedure

�closure� the bindings it refers to are guaranteed to exist� �The garbage collector will not reclaim

the procedure�s storage� or the storage for the let bindings�

Here�s an example that may clarify this� and show one way of taking advantage of it�

Suppose we type the following expression at the Scheme prompt� to be interpreted in a top�level

environment�

Scheme� 	let 		count ���

	lambda 	�

	begin 	set count 	� count ���

count���

��proc ������

Chapter �� Environments and Procedures ���

Evaluating this let expression
rst creates a binding environment with a binding for count�

The initial value of this binding is �� In this environment� the lambda expression creates a closure�

When executed� this procedure will increment the count� and then return its value� �Note that

the procedure is not executed yet� however	it�s just created� This procedure� returned by the

lambda expression� is also returned as the value of the let expression� because a let returns the

value of its last body expression� The read�eval�print loop therefore prints a representation of the

�anonymous procedure�

Unfortunately� we didn�t do anything with the value� like give it a name� so we can�t refer to

it anymore� and the garbage collector will just reclaim it� �OOPS� Now suppose we want to do

the same thing� but hold onto the closure so that we can do something with it� We�ll bind a new

variable my�counter� and use the above let expression to create a new environment and procedure�

just like before�

Scheme� 	define my�counter 	let 		count ���

	lambda 	�

	set count 	� count ���

count����

my�counter

Now we have a top�level binding of my�counter� whose value is the procedure we created� The

procedure keeps a pointer to the environment created by the let� which in turn has a pointer to

the top�level environment� thus�

� should simplify this picture and use it earlier� for the simpler example where we don�t keep a

pointer to the closure� Should show the envt register pointing to the let envt at the moment the

closure is created� �

Chapter �� Environments and Procedures ���

'envt(

������������������������

� � car � ������� ���

� ��������������������

� � cons � ������� ���

� ��������������������

� � � �

� �

� � � �

� ��������������������

� � my�counter � �����������������

� �������������������� �

� ��$ �

� � �

� 'envt(� �

� �������������������� �

� � 'scope(� � � �

� �������������������� �

� � count � ��������� �

� �������������������� $��

� ��$ 'closure(

� � �����������

� ����������������������� �

� �����������

� � � �

� �����������

� �

� $��

� 'code(

� ����������������������

��������� � 	set count �

envt � � � � 	� count ��� �

��������� � count �

����������������������

Now if we call the procedure my�counter� it will execute in its own �captured� environment

�created by the let� It will increment the binding of count in that environment� and return the

result� The environment will continue to exist as long as the procedure does� and will store the

latest value until next time my�counter is called�

Chapter �� Environments and Procedures ���

Scheme�	my�counter�

�

Scheme�	my�counter�

�

Scheme�	my�counter�

�

Notice that if we evaluate the let form again� we will get a new let environment� and a new

procedure that will increment and return its count value	in e�ect� each procedure has its own little

piece of state which only it can see �because only it was created in that particular environment�

If we want� we can de
ne a procedure that will create new environments� and new procedures that

capture those environments	we can generate new counter procedures just by calling that �higher�

order� procedure� �Recall that a higher�order procedure is just a procedure that manipulates other

procedures� In this case� we�re making a procedure that generates procedures�

Each time make�counter is called� it will execute a let� creating an environment� and inside

that it will use lambda to create a counter procedure�

Scheme� 	define 	make�counter�

	let 		count ���

	lambda 	�

	set count 	� count ���

count���

make�counter

Each of the resulting procedures will have its own captured count variable� and keep it indepen�

dently of the other procedures�

Make sure you understand that the above procedure de
nition could have used an explicit

lambda to create the procedure make�counter� rather than the special procedure de
nition syntax�

Scheme� 	define make�counter

	lambda 	�

	let 		count ���

	lambda 	�

	set count 	� count ���

count���

Chapter �� Environments and Procedures ���

You may actually
nd this easier to understand� because it shows you exactly what�s going on�

binding make�counter and creating a procedure �with the outer lambda that when called� will

evaluate a let to create an environment� and a lambda �the inner one to create a procedure that

captures it�

Now we�ll call the procedure created by the above de
nition� three times� and each time it will

create a new procedure�

Scheme� 	define c� 	make�counter��

C�

Scheme� 	define c� 	make�counter��

C�

Scheme� 	define c� 	make�counter��

C�

Now we�ll call those procedures and look at their return values� to illustrate that they�re inde�

pendent counters�

Scheme� 	c��
�
Scheme� 	c��
�
Scheme� 	c��
�
Scheme� 	c��
�
Scheme� 	c��
�
Scheme� 	c��
�
Scheme� 	c��
�

Neat� huh� The combination of block structure �local environments with
rst�class proce�

dures �closures� allows us to associate state with procedures� Garbage collection makes this very

convenient� because we know that the environments will hang around as long as the procedures do�

If you�re familiar with object�oriented programming� you may notice a resemblance between

closures and �objects� in the object�oriented sense� A closure associates data with a procedure�

where an object associates data with multiple procedures� After we get to object�oriented pro�

gramming� we�ll explain how object�oriented programming facilities can be implemented in Scheme

using closures�

Chapter �� Environments and Procedures ���

If you�re familiar with graphical user interface systems� you may notice that GUI�s often use

�callbacks�� which are procedures that are executed in response to user input events like button

clicks and menu selections� and do something application�speci
c� �The application �registers�

callback procedures with the GUI system� which then calls them when the user clicks on the

speci
ed buttons� Closures make excellent GUI callback procedures� because the application can

create a closure for a speci
c context by capturing variable bindings� to customize the behavior of

the procedure�

��� Lambda is cheap� and Closures are Fast

It may seem that lambda is an expensive operation	after all� it creates procedure objects on the

�y� At
rst glance� you might think that executing lambda would require a call to the compiler each

time� This is not the case� though� and lambda is actually a fairly cheap constant�time operation�

Notice that the procedure part of a lambda expression is known at compile time	each time the

lambda is executed at run time� it will create a new closure� and may capture a new environment�

but the expression closed in that environment is determined solely by the body of the lambda

expression� A compiler for scheme will therefore compile the lambda like any other procedure�

when it compiles the enclosing procedure� So� for example� when our example procedure make�

counter is compiled� the compiler will also compile the code for the lambda body� This code will

be kept around for use by make�counter�

The actual run�time code for lambda just consists of fetching the address of the code� and the

current environment pointer� and putting them in a closure object on the heap� lambda is therefore

about as fast as cons	all that�s really happening is the creation of the closure object itself� not

anything expensive like calling the compiler at run�time�

� cost of lambda calling is a handful of instructions����

��� An Interpreter with let and lambda

In this section� I�ll present a new interpreter for a bigger subset of Scheme� it handles all of the

essential special forms of Scheme� except for macro de
nitions� �A macro facility would be easy

to add� as well� and would make it easy to implement the remaining special forms by automatic

transformation� in terms of the special forms the interpreter �understands� directly�

Chapter �� Environments and Procedures ���

The new interpreter is very much like the one from the last chapter� with three important

di�erences�

It implements local binding environments as well as a top�level environment� Evaluating an

expression �such as a let may create a new environment� and subexpressions �such as the

let body can simply be evaluated in the new environment by recursive calls to eval

It allows new procedures to be de
ned� creating closures� Closures pair environments with

code bodies that are interpreted by the interpreter� Calling a closure is much like evaluating

a let� The arguments are bound in a local environment �like let variables� and the body is

interpreted in that environment�

We will treat special forms di�erently� binding special form names in much the same way as

normal variable names� This will make the interpreter cleaner and more extensible�

Here is our new eval�

	define 	eval expr envt�

	cond 		symbol� expr�

	eval�symbol expr envt��

		pair� expr�

	eval�list expr envt��

		self�evaluating� expr�

expr�

	�t

	syntax�error �Illegal expression form� expr����

Notice that not much has changed	eval still just analyzes expressions and dispatches to more

specialized helper procedures that handle particular kinds of expressions�

The important di�erence is that eval expects and environment argument envt� which represents

the binding environment in which to evaluate an expression�

����� Nested Environments and Recursive Evaluation

Instead of using the old ��at� representation of an environment� which was just a table of

name�value pairs� we�ll represent nested environments as a list of tables� or environment chain�

When we begin interpretering� the environment chain will consist of one table� the top�level

environment� When we evaluate a binding construct such as a let� we will create a new table� or

Chapter �� Environments and Procedures ���

enviornment frame� which binds the local variables� This frame will contain the name�value pairs

bound locally� plus a pointer to the next enclosing environment� The environment chain is thus

a linked list that acts like a stack� for the most part	new enviornment frames are pushed on the

front of the list when entering a binding construct� and popped o� the front of the list when exiting

it�

We could implement this stack�like behavior with an explicit stack data structure in the inter�

preter� but it�s easier to use the activation �stack� of the language we�re using to implement the

interpreter� �In this case� that happens to be Scheme� but if we were implementing the interpreter

in C� we could use C�s activation stack�

At any given point during evaluation� the current environment is the environment referred to

by the interpreter�s variable eval� an in particular the most recent binding of eval�

When we evaluate an expression that doesn�t change the interpretive environment� and call eval

recursively to evaluate subexpressions� we simply pass the envt variable�s value to the recursive

calls� This will ensure that the subexpressions execute in the same environement as the containing

expression�

When we evaluate a binding construct� and evaluate subexpressions in that environment� we

create a new environment and pass that to the recursive calls to eval� so the subexpressions will

execute in the new enviornment instead�

Notice that we don�t actually modify the environment chain when creating a new environment	

we simply create a new frame which holds a pointer to the old environment� and pass it to

the recursive eval� The fact that we don�t actually modify the structure of the environment is

important	it�s will let us implement closure correctly�

When the interpreter returns from evaluating a subexpression� it returns to an enclosing invo�

cation of eval� the old environment will become visible again because we return to an eval where

that environment is the value of the envt argument�

For example� consider what happens when we interpret the following expression� starting at the

top level

Chapter �� Environments and Procedures ���

	let 		foo ���

	if 	a�

	let 		bar ���

	if 	b�

	c�

	d��

	e��

	f�

	g��

� We�ll focus on the nested calls to eval corresponding to the nesting of let� if� let� if �

If we look at the nested calls to eval� we
rst see a call that evaluates the whole expression in

the top�level environment�

�������

eval expr� 	let���� envt� � ������� 'toplevel envt(

�������

�I�ve given a textual representation of the expr argument� but a pictorial representatio of the

envt argument�

eval will dispatch to eval�let� passing it the same environment� eval�let will evaluate the

initial value expression � in that environment� and create a new environment binding foo� �I�ll

ignore the recursive call to eval to evaluate the argument� It will then call eval recursively to

evaluate the let body in that environment�

I�ll depict the nested invocations of eval and eval�let top�to�bottom� showing the stack grow�

ing twoard the bottom of the picture� �This just turns out to be simpler than drawing the stack

growing up�

Chapter �� Environments and Procedures ���

�������

eval expr� 	let���� envt� � ������� 'toplevel envt(

������� ��$ ��$

� �

������� � �

eval�let expr� 	let���� envt� � ������������ �

������� �

�

������� �

eval expr� 	if���� envt� � ������� ' 'foo �(� (

�������

eval�if will evaluate the condition expression 	a� in the given environment� We�ll ignore that

recursive call to eval� but assume it returns a true value� In that case� eval�if will evaluate its

consequent� the inner let expression� by another recursive call to eval�

At this point� the �stack� of invocations of eval� eval�let� and eval�if looks like this�

�������

eval expr� 	let���� envt� � ������� 'toplevel envt(

������� ��$ ��$

� �

������� � �

eval�let expr� 	let���� envt� � ������������ �

������� �

�

������� �

eval expr� 	if���� envt� � �������� ' 'foo �(� (

������� ��$

�

�

������� �

eval�if expr� 	if���� envt� � ������������

������� �

�

������� �

eval expr� 	let���� envt� � ������������

�������

Chapter �� Environments and Procedures ���

Again� the let will evaluate the intial value expression� �� by a recursive call to eval� which we

will ignore here� Then it will bind bar in a new environment frame� and call eval recursively to

evaluate the body in that environment� The body consists of another if� so eval�if will be called�

and it will evaluate its argument expression and either the consequent or the alternative in that

environment�

Assuming the condition returns true and it evaluates the consequent� 	c�� here�s the �stack� of

invocations of eval� eval�let� and eval�if at the point where 	c� is evaluated�

�������

eval expr� 	let���� envt� � ������� 'toplevel envt(

������� ��$ ��$

� �

������� � �

eval�let expr� 	let���� envt� � ������������ �

������� �

�

������� �

eval expr� 	if���� envt� � �������� ' 'foo �(� (

������� ��$ ��$

� �

� �

������� � �

eval�if expr� 	if���� envt� � ������������ �

������� � �

� �

������� � �

eval expr� 	let���� envt� � ������������ �

������� �

�

������� �

eval expr� 	if���� envt� � �������� ' 'bar �(� (

������� ��$

�

������� �

eval expr� 	c� envt� � ������������

�������

Chapter �� Environments and Procedures ���

� Note that the pictures above all depict evaluation of nested non�tail expressions� In the case

of tail expressions� the �stack� will not include as much information� because the state of the calls

to eval� etc�� will not be saved before the calls that evaluate subexpressions�

Our interpreter is written in good tail�recursive style� with tail calls to evaluate expressions that

are tails of expressions in the language we�re interpreting� This means that the intepreter is tail�

recursive wherever the program it�s implementing is tail�recursive� and since it�s implemented in a

tail�recursive language �Scheme� we preserve the tail�recurson of the program we�re interpreting� In

e�ect� we snarf tail�call optimization from the underlying Scheme system� If we were implementing

our interpreter in C� we�d have to use special tricks to preserve tail recursion� We�ll show how this

can be done later� when we discuss our compiler� �

����� Integrated� Extensible Treatment of Special Forms

In the interpreter in the last chapter� we implemented special forms directly in the interpreter	

eval�list checked compound expressions to see if they began with a special form name� In e�ect�

we hardcoded the meanings of special form names in the procedure eval�special�form�

In our new interpreter� we�ll use a cleaner approach� which treats special form de
nitions pretty

much like variable de
nitions� This will let us put special forms in particular environments� and

use the normal scoping mechanisms to look up the routines that compile them�

This has several advantages� The
rst is that it makes our interpreter more modular� We

can create di�erent environments with di�erent special forms� and use the same interpreter to

interpret di�erent languages� That is� we separate out the basic operation of the interpreter from

the particular special forms we decide on�

The second advantage is that it will allow us to build an elegant macro facility� so that new

special forms can be de
ned in terms of old ones� �This will be described in detail in � a later

chapter ��

� this is out of place� but fwd ref idea anyway� Shorten� Or just move��

A Scheme interpreter or compiler only needs to �understand� procedure calling and a few basic

special forms	if� lambda� set� quote� �did I leave one out��� and one very special special form

for de
ning new special forms �macros� �We can write cond as a macro using if� let as a macro

using lambda� letrec as a macro using let� lambda� and set� and so on�

Chapter �� Environments and Procedures ���

The third advantage is that we can use the same scoping rules for special forms that we use

for variables� This will be very convenient later� because we will be able to de
ne local macros� in

much the same way we de
ne local procedures�

To support this� we need to represent bindings slighly di�erently� In the simple interpreter from

the last chapter� each binding was just a name�value pair� Now we�ll have a third part to each

binding� telling what kind of binding it is	a variable binding� a special form binding� or a macro

binding�

We can still use associations to represent the bindings� Where the simpler interpreter repre�

senting each binding as an association of the form 	name value�� the new one will use bindings of

the form 	name type whatever�� In the case of a normal variable binding� the �whatever� is the

actual value of the variable� In the case of a special form� the �whatever� is the information the

interpreter needs to interpret that particular special form� including the procedure to evaluate it�

For example� when binding the name let� we can store a pointer to the procedure eval�let right

there in the binding information�

Since the exact representation of bindings is irrelevant� and we may want to change it� we�ll call

the whole thing a binding�info data structure� This re�ects that fact that it may not hold just

a binding� but also any auxiliary information we want to store�

To abstract away from exactly how bindings are implemented� we�ll de
ne several procedures

that operate on binding�info�s� These include�

binding�type� which returns a symbol saying what kind of binding it is� �variable� for

a normal variable� �special�form� for a built�in special form binding� and �syntax� for a

syntax �macro binding�

bdg�variable�ref� which returns the value of a normal variable binding�

bdg�special�form�evaluator� which returns an evaluation procedure for a special form bind�

ing�

For now we�ll ignore �syntax� bindings� which will be discussed in a later chapter�

� give actual code for accessors� etc� �

Here�s our new eval�list for handling compound expressions�

Chapter �� Environments and Procedures ���

	define 	eval�list list�expr envt�
� only try to consider it specially if the head is a symbol
	if 	symbol� 	car list�expr��

� look it up in the current lexical environment
	let 		binding�info 	envt�lexical�lookup envt 	car list�expr����

� switch on the type of thing that it is
	cond 		not binding�info�

	run�time�error �Unbound symbol� 	car list�expr���
	else
	cond

� special forms just call the special�form
� evaluator
 which is stored in the binding�info
� object itself
		eq� 	binding�type binding�info� #�special�form��
		bdg�special�form�evaluator binding�info� list�expr envt��

		eq� 	binding�type binding�info� #�variable��
	eval�combo 	bdg�variable�ref binding�info�

	cdr list�expr�
envt��

		eq� 	binding�type binding�info� #�syntax��
	eval�macro�call 	bdg�syntax�transformer binding�info�

list�expr
envt��

	else
	internal�error �Unrecognized binding type�������

� the head of the list is not a symbol
 so evalute it
� and then do an eval�combo to evaluate the args and
� call the procedure
	eval�combo 	eval 	car list�expr� envt�

	cdr list�expr�
envt���

eval�list
rst checks to see whether the head of the list is a symbol� if not� it�s just a combina�

tion �procedure call expression� and is handled by eval�combo� �Remember that a combination can

have an arbitrary expression as its operator� and that expression is assumed to return a procedure

to call�

If it is a symbol� the binding of the variable is looked up� If it�s a special from binding� the

evaluation procedure is extracted from the binding info� and called to evaluate the expression�

If the head of the list is just the name of a normal variable� that�s also just a combination� and

eval�combo is called in that case� too�

Chapter �� Environments and Procedures ���

If the head of the list is the name of a syntax binding �macro� we call eval�macro�call to deal

with it� don�t worry about this for now	it will be discussed in detail in Chapter � whatever ��

Notice that in all cases� the environment is passed along unchanged to whatever procedure

handles the expression�

����� Interpreting let

The procedure eval�let will be stored in the binding for the special form let� In the case

of a let expression� eval�let �above will extract this procedure from the binding and call it to

evaluate the expression�

	define 	eval�let let�form envt�

� extract the relevant portions of the let form

	let 		binding�forms 	cadr let�form��

	body�forms 	cddr let�form���

� break up the bindings part of the form

	let 		var�list 	map car binding�forms��

	init�expr�list 	map cadr binding�forms���

� evaluate initial value expressions in old envt
 create a

� new envt to bind values

	let 		new�envt 	make�envt var�list

	eval�multi init�expr�list envt�

envt���

� evaluate the body in new envt

	eval�sequence body�forms new�envt�����

The
rst thing let does is to extract the list of variable binding clauses and the list of body

expressions from the overall let expression� Then it further decomposes the variable binding

clauses� extracting a list of names and a corresponding list of initial value expressions� �Notice how

easy this is using map to create lists of car�s and cadr�s of the original clause list�

eval�let then calls a helper procedure� eval�multi� to recursively evaluate the list of initial

value expressions and return a list of the actual values�

Chapter �� Environments and Procedures ���

Then it calls make�envt to make the new environment� This creates a new environment frame�

scoped inside the old environment	i�e�� with a scope link to it	with variable bindings for each of

the variables� initialized with the corresponding values�

Then eval�let calls eval�sequence to recursively evaluate the body expressions in the new

environment� in sequential order� and return the value of the last expression� This value is returned

from eval�let as the value of the let expression�

Here�s the code for eval�multi� which just uses map to evaluate each expression and accumulate

a list of results�

eval�multi calls eval recursively to evaluate each subexpression in the given environment� To

do this� it must pass two arguments to eval� It uses map to iterate over the list of expressions�

but instead of calling eval directly� map calls a helper procedure that takes an expression as its

argument� and then passes the expression and the environment to eval�

Recall from section � whatever � that technique is known as currying� We use lambda to create a

specialized version of a procedure �in this case eval� which automatically supplies one of the argu�

ments� In e�ect� we create a specialized� one�argument version of eval that evaluates expressions

in a particular environment� and then map that procedure over the list of expressions�

	define 	eval�multi arg�forms envt�

	map 	lambda 	x�

	eval x envt��

arg�forms��

Here�s the code for eval�sequence� which is very much like eval�multi	it just evaluates a

list of expressions in a given environment� It�s di�erent from eval�multi in that it returns only

the value of the last expression in the list� rather than a list of all of the values�

	define 	eval�sequence arg�forms envt�

	if 	pair� arg�forms�

	cond 		pair� 	cdr arg�forms��

	eval 	car arg�forms� envt�

	eval�sequence 	cdr arg�forms� envt��

	else

	eval 	car arg�forms� envt���

#�undefined�value��� � the value of an empty sequence

Chapter �� Environments and Procedures ���

�Notice that we�ve written eval�sequence tail�recursively� and we�ve been careful to evaluate

the last expression using a tail�call to eval� This ensures that we won�t have to return to eval�

sequence� so if the expression we�re interpreting is a tail�call� we won�t lose tail�recursiveness in

the interpreter�

����	 Variable References and set�

eval�symbol handles variable references� It looks up the binding of the symbol� if there is

one	if not� it�s an unbound variable error	and checks to see that it�s a variable reference and not

a special form or macro� If it is a normal variable� it fetches the value from the binding and returns

it�

	define 	eval�symbol name�symbol envt�

	let 		binding�info 	envt�lexical�lookup envt name�symbol���

	cond 		not binding�info�

	run�time�error �Symbol does not have value�

name�symbol��

		eq� 	binding�type binding�info� #�variable��

	bdg�variable�ref binding info��

	else

	syntax�error �non�variable name referenced as variable�

name�symbol�����

eval�set handles the set special form� It will be stored in a special form binding of the

name set� and extracted and called �by eval�list to evaluate set expressions�

	define 	eval�set set�form envt�

	let 		name 	cadr set�form��

	value�expr 	caddr set�form���

	let 		binding�info 	envt�lexical�lookup envt name���

	cond 		not binding�info�

	run�time�error �Attempt to set undeclared variable� name��

		eq� 	binding�type binding�info� #�variable��

	bdg�variable�set binding�info 	eval value�expr envt���

	else

	syntax�error �Attempt to set a non�variable� name������

Chapter �� Environments and Procedures ���

����� Interpreting lambda and Procedure Calling

Our new interpreter will handle de
ning and calling new procedures� This is not di�cult�

because all of the major mechanisms are already in place� We need the ability to de
ne local

variables �e�g�� arguments� which we already implemented for let� We also need the ability to

interpret the procedure bodies� but the interpreter we�ve got is just
ne for that� We�ll simply

store the procedure bodies as s�expressions� and interpret them like any other expressions when the

procedure is called�

Our representation of closures will be very simple� A closure mainly pairs an environment with

a procedure body� but we also need to specify a list of argument the procedure will accept�

We�ll de
ne a procedure make�closure to construct a closure� given a pointer to an environ�

ment� a pointer to a list of argument names �symbols� and pointer to a procedure body �a list of

expressions�

We�ll also de
ne the procedures closure�envt� closure�args� and closure�body to extract

those parts when we call the procedure�

As a slight complication� we�d like to start out with some prede
ned procedures� and the easiest

way to do that is simply to snarf the corresponding procedures from the underlying Scheme system�

i�e�� the language we�re using to implement our interpreter� �If we were writing our interpreter in

C or assembly language� we might write the code bodies of built�in procedures in that language�

These snarfed procedures will be the built�in �primitive� operations in our language� which

can be �glued together� by the interpreter to build new procedures� which may be arbitrarily

complicated�

In the simple interpreter in the last chapter� we snarfed procedures directly	we just used

closures in the underlying Scheme as procedures in our language� In the new interpreter� we need

to distinguish between snarfed procedures �which we can simply call from inside the interpreter

and user�de
ned procedures� which we must interpret via recursive calls to eval�

Our representation of closures will therefore support two predicates� closure� will test an object

to see if it is a closure of either sort� primitive�closure� will test whether a closure represents a

snarfed procedure from the underlying Scheme system�

In the case of a primitive closure� calling the closure just consists of extracting the underlying

Scheme closure� and calling it with the given argument values� �We don�t snarf any procedures

Chapter �� Environments and Procedures ���

that depend on what environment they execute in� We only snarf functions like � and cons� which

depend only on their arguments�

A closure therefore has three important
elds� a pointer to an environment� a pointer to a list

of argument names� and a pointer to a code body� It also has a �hidden� type
eld� saying that

what kind of object it is�

� I�m glossing over the actual representation in the underlying Scheme system� because it really

doesn�t matter� It could be an association list� a vector� or whatever� �

eval�lambda is the procedure called from eval�list to handle lambda expressions� It will be

stored in binding of lambda of the name lambda �with binding type �special�form�� and extracted

and called to actually interpret lambda�s�

	define 	eval�lambda lambda�form envt�

	let 		formals 	cadr lambda�form��

	body 	cddr lambda�form���

	make�closure envt formals body���

eval�lambda simply extracts the argument list and body expression list from the lambda ex�

pression� and calls make�closure with them �and the current environment to create the closure

object� Storing the current environment in the closure ensures that when the closure is interpreted

later� it will still be able to refer to the same bindings that were visible when it was created�

eval�combo is called from eval�list to evaluation combinations �procedure call expressions�

�Note that eval�list evaluates the operator expression before calling eval�combo� and hands it

the closure plus a list of unevaluated argument expressions� This is not particularly signi
cant	we

could have passed the operator expression to eval�combo unevaluated� like the argument expres�

sions� and have eval�combo evaluate it instead� As we�ve written it� we ensure that the operator

expression is evaluated before the arguments� We could change it to get the opposite e�ect� This

would still be legal	the Scheme standard does not specify the order of evaluation� and an imple�

mentation may even use di�erent orders at di�erent call sites�

� DONOVAN	maybe we should change it� RScheme evaluates the operator expression last� so

maybe the interpreter should� too� �

eval�combo evaluates the argument expressions in the given environment to get the argument

values� using eval�multi� and calls eval�apply to call the given closure with those values�

Chapter �� Environments and Procedures ���

	define 	eval�combo proc arg�expr�list envt�

� use our own kind of apply to run our own kind of closures

	eval�apply proc

� evaluate the arguments
 collecting the results into a list

	eval�multi arg�expr�list

envt���

eval�apply does the actual procedure call� after the arguments have been evaluated� That is�

it applies the given procedure �closure to the given arguments�

If the closure we�re calling is a primitive closure� we simply extract the underlying Scheme

procedure and call that� using the standard Scheme procedure apply� Scheme�s apply takes a list

of any number of values� and calls the procedure as though the arguments had been passed to it in

the normal way�

�To make sure that you understand that� here�s a simple usage of Scheme�s apply� 	apply �

#	� ���� This call to apply will take the procedure � and call it with the values � and �� just as if

we had written 	� � ��� Likewise� 	apply list #	� � � ��� returns the same thing as 	list � �

� ���

Chapter �� Environments and Procedures ���

	define 	eval�apply proc arg�list�

	if 	primitive�closure� proc�

� it#s a primitive
 so extract the underlying language#s

� closure for the primitive
 and do a real 	underlying Scheme�

� apply to call it

	apply 	closure�primitive proc� arg�list�

� it#s not a primitive closure
 so it must be something

� we created with make�closure

�

� first
 bind the actuals into a new environment
 which

� is scoped inside the environment in which the closure

� was closed

	let 		new�envt 	make�envt 	closure�args proc�

arg�list

	closure�envt proc����

� then
 evaluate the body forms
 returning the

� value of the last of them�

	eval�sequence 	closure�body proc�

new�envt����

In the case of a user�de
ned �interpreted closure� eval�combo creates a new environment to

bind the arguments values� much as it does to bind the local variables of a let� it calls make�envt

with the name list� the corresponding value list� and the old environment� and gets back a pointer

to the new environment frame� scoped inside the old one�

There�s a big di�erence here� though� The �old� environment that�s used in creating the new

one is not the environment that was passed to eval�combo� �Notice that eval�combo did not even

pass that environment to eval�apply�

When we call the closure� we extract the environment stored in the closure� and use that as the

�old� environment� This ensures that the closure body will evaluate in the environment where it

was de
ned� augmented with the bindings of its arguments� This is the crucial step in preserving

lexical scope	the meanings of identi
ers in the procedure body are
xed at the moment the closure

is created� because it captures the current environment at that point�

Once the new environment is created� eval�combo simply calls eval�sequence to evaluate the

sequence of body expressions and return the value of the last one� eval�combo simply returns this

Chapter �� Environments and Procedures ���

value as the return value of the procedure call� �Notice that the call to eval�sequence is a tail

call� preserving the tail recursion of the program we�re interpreting�

������� Mutual Recursion Between Eval and Apply

It is important to understand the relationship between eval and apply in the interpreter�

This will help you understand how scoping is implemented� and will also help you understand the

relationship between an interpreter and a compiler�

eval calls itself to evaluate normal nested expressions� It may do this indirectly� by using helper

procedures that discriminate di�erent kinds of expressions� but in general recursive calls to eval

correspond to the nested structure of a procedure�

apply is very di�erent� When the interpreter gets to a procedure call� it calls apply to jump to

a di�erent procedure� not a nested expression of the same procedure� �Note that the arguments to

a procedure call are evaluated like any other nested expressions� by calling eval� but the call itself

is done by apply�

Normal recursive calls to eval therefore correspond to the local nesting structure of the code�

but calls to apply correspond to transfers of control to di�erent procedures�

� Any other miscellaneous stu� I should explain� Should have a pointer to the source
le for

the whole interpreter��� �

� Say that�s it for the interpreter for now��� we�ll come back to it when we talk about macros�

and we�ll talk about a compiler with very similar structure later��� �

��� Variants of let� letrec and let�

Scheme provides two useful variants of let� letrec supports the creation of recursive local

procedures� including mutually recursive sets of procedures� let� supports the sequenced binding

of variables� where each initial value expression can use the previous bindings�

Chapter �� Environments and Procedures ���

��	�� Understanding letrec

When a normal let is evaluated� the initial value expressions are evaluated before binding

is done� The initial value expressions execute in the environment outside the let� and then the

bindings are created and initialized with those values�

Often� we want the initial value expression for a binding to be able to create a procedure that

will see the new bindings� For example� suppose we want to create a local procedure which is

recursive� We might try this�

� buggy example with tail�recursive local procedure

	define 	some�procedure����

	let 		helper 	lambda 	x�

���

	if some�test�

	helper �������� � broken recursive call

���

	helper ���� � call to recursive local procedure

�����

The problem with this example is that when the let is evaluated� the lambda expression will

create the helper procedure in the wrong environment	before the variable helper is bound� The

resulting procedure will be scoped in the environment outside the let� not the new environment

where helper is visible� When the procedure calls helper	which we had intended to be a recursive

call	it will not use new binding of helper that we created� Inside the lambda body� helper will

still refer to whatever binding of helper was visible before intering the let� �Very likely� that�s no

variable at all� and this will cause an unbound variable error�

letrec lets us create an environment before evaluating the initial value expressions� so that the

initial value computions execute inside the new environment� We can
x the problem by using a

letrec instead of a let�

	define 	some�procedure����

	letrec 		helper 	lambda 	x�

���

	if some�test�

	helper �������� � recursive call

���

	helper ���� � call to recursive local procedure

�����

Chapter �� Environments and Procedures ���

Now the procedure helper can �see its own name�� since the lambda expression is evaluated in

the environment where helper is bound�

A letrec expression is equivalent to a let where the bindings are initialized with dummy values�

and then the initial values are computed and assigned into the bindings� The above example is

equivalent to�

	define 	some�procedure ����

	let 		helper #�dummy�value���

	set helper 	lambda 	x�

���

	if some�test�

	helper �������� � recursive call

���

	helper ���� � call to recursive local procedure

�����

letrec can be used when de
ning mutually recursive procedures� each of which can see the

others� names and call them�

	define 	some procedure ����

	letrec 		helper� 	lambda 	�

��� 	helper�� �����

	helper� 	lambda 	�

��� 	helper�� ������

���

	helper�� � start up mutual recursion

�����

Notice that all letrec does is bind variables and �re�initialize them� You can use it to de
ne

plain variables as well as procedure variables� For example� if the recursive procedures above need

to reference a shared variable� you can do this�

Chapter �� Environments and Procedures ���

	define 	some procedure ����

	letrec 		helper� 	lambda 	�

��� var� ��� 	helper�� �����

	helper� 	lambda 	�

��� 	helper�� ��� var� �����

	var� �f��

���

	helper�� � start up mutual recursion

�����

� should come up with some simple concrete examples����

As with let� the order of evaluation of a letrec�s initial value expressions is unde
ned� For

example� the above letrec might be compiled as though it were a let like this�

	define 	some procedure ����

	let 		helper� #�dummy�value��

	helper� #�dummy�value��

	var� #�dummy�value���

	set helper� 	lambda 	�

��� 	helper�� ��� var� �����

	set var� �f�

	set helper� 	lambda 	�

��� var� ��� 	helper�� �����

���

	helper�� � start up mutual recursion

�����

When using letrec and lambda to de
ne local procedures� in the usual way� the order of

evaluation is irrelevant	the lambda expressions can be executed in any order� because they only

refer to the bindings of the letrec variables� not their values� The values are only used when

the resulting procedures are called� The following would be an error� however�

Chapter �� Environments and Procedures ���

	define 	some procedure ����

	letrec 		helper� ����

	helper� ����

	var� 	list helper� helper����

���

		car 	var� helper���� � start up mutual recursion

�����

Here the initialization of var� depends on the values of helper� and helper�� which may not

have been computed yet�

��	���� Using letrec and lambda to Implement Modules

Standard Scheme does not have a module system� but letrec and lambda are powerful enough

to implement modules in portable Scheme�

Suppose we would like to de
ne a module that encapsulates a set of procedures and variables�

but only exports a subset of those procedures�

We can represent the module as a letrec environment which exports an association list of of

procedures�

Here we�ll create a module called foo module� which de
nes four procedures and two variables�

and exports two of the procedures� foo and bar�

	define foo�module

� create a letrec environment with internal definitions

� of some variables and procedures

	letrec 		private�proc� 	lambda 	���� �����

	private�proc� 	lambda 	���� �����

	private�var� ����

	private�var� ����

	foo 	lambda 	���� �����

	bar 	lambda 	���� ������

� return an association list of �exported� closures

	list 	list #foo foo�

	list #bar bar����

Chapter �� Environments and Procedures ���

The letrec expression will create an environment� and within that environment it will evaluate

the initial value expressions to initialize the bindings� All of the procedures in the letrec can see

each other�s names� and call each other freely� Procedures outside the letrec cannot�

The only procedures that can be called from outside the letrec are foo and bar� which are

returned from the letrec in an association list� We�ve saved this list in the binding of foo�module�

so that we can look those procedures up and call them�

We can clean this up a little by providing an accessor function that will extract a single procedure

from a module� by using assq to
nd the appropriate closure�

	define 	module�get mod name�

	cadr 	assq mod name���

To import a procedure and give it a name in another environment� we can do this�

	define foo 	module�get foo�module #foo��

If we want to� we can give it a di�erent name in the environment we�re �importing� it into�

	define quux 	module�get foo�module #foo��

This lets us rename a procedure imported from a module� to avoid naming con�icts� quux is

exactly the same procedure as foo� but by a di�erent name in a di�erent scope� When we call it�

it will execute in the environment where it was de
ned� namely the �private� environment of the

module we created with letrec�

��	�� let�

For situations where the order of initialization is important� Scheme provides a variant of let

called let��

Suppose we tried the following using let�

Chapter �� Environments and Procedures ���

	define 	foo x�

	let 		a ��

	upper 	� a epsilon��

	lower 	� a epsilon���

�����

This will not do what we probably meant� because the initial values of upper and lower will

be computed before a is bound� We could
x this by using nested let�s� to force evaluation and

binding to happen in the desired order�

	define 	foo epsilon�

	let 		a ���

	let 		lower 	� a epsilon��

	upper 	� a epsilon���

�����

This ensures that a is bound before we evaluate the initial value expressions for upper and

lower�

Scheme provides let� to avoid needing lots of nested lets when initilizing a series of bindings�

each of which may depend ont the previous ones� e�g��

	define 	bar x y�

	let� 		diff 	� x y��

	diff�squared 	� diff diff��

	diff�cubed 	� diff�squared diff���

����

is exactly equivalent to

	define 	bar x y�

	let 		diff 	� x y���

	let 		diff�squared 	� diff diff���

	let 		diff�cubed 	� diff�squared diff���

�������

��� Iteration Constructs

Chapter �� Environments and Procedures ���

����� Named let

Named let is a general and �exible iteration construct that is really just syntactic sugar for a

letrec and one or more lambda�s� It looks like a let� but it�s usually used as a loop�

Named let implements iteration as recursion� If you use it in normal ways� you write loops that

act as tail�recursive procedures� You can also use it to write �loops� that aren�t tail recursive� but

that�s uncommon�

Named let binds loop variables� and executes the loop body� Anywhere in the loop body� you

can call a procedure to iterate the loop�

Here�s an example loop� which prints out the integers from � to ��

	let loop 		i ���

	display i�

	if 	� i ���

	loop 	� i �����

Here we�ve written a loop and given it an identi
er� loop� that�s just a name we chose for this

particular loop	we could have used any identi
er�

This loop binds the loop variable i� giving it the intial value �� Then it enters the body of the

loop� which prints out i using display� and evaluates the if expression� If the if condition returns

a true value� it evaluates the expression 	loop 	� i ���� which iterates the loop� This looks like a

call to a procedure named loop� which iterates the loop� The argument passed is the new value of

the loop variable for the next iteration�

The reason that the expression that iterates a loop looks like a procedure call is that it is a

procedure call� A named let is exactly equivalent to a letrec that de
nes a named procedure�

whose body is the body of the named let� and then calls that procedure to start the recursion�

When you write a �loop� with named let� you�re really writing a recursive procedure and a call to

that procedure� The loop variable�s are really arguments to the procedure� and the initial values

of the loop variables are just the
rst argument passed to the procedure to start the recursion�

The above example is exactly equivalent to�

Chapter �� Environments and Procedures ���

	letrec 		loop 	lambda 	i� � define a recursive

	display i� � procedure whose body

	if 	� i ��� � is the loop body

	loop 	� i �������

	loop ��� � start the recursion with � as arg i

When you supply the name of a named let� you�re really supplying the name of a letrec

variable that will name a procedure� When you supply the body of the named let� you�re really

supplying the body of the named procedure� When it iterates the loop� it is calling itself recursively�

passing the new invocation the new value of the loop variable as an argument�

To start o� the loop� named let passes this procedure the initial value expression for the loop

variable�

We can provide any expression we want to compute the new value of the loop variable	we don�t

have to increment it by one� We can also provide any test we want to decide whether to iterate the

loop�

For example� here�s procedure which uses a loop to search a list of alternating key�value pairs�

�This is not an association list� but a linear list of alternating keys and values� called a property

list� It iterates through the list two elements at a time� If it
nds an odd�numbered element that�s

eq� to what it�s looking for� it returns the next �even�numbered element� otherwise� it continues

through the loop�

	define 	property�list�search lis target�

	let loop 		l lis��

	cond 		null� l�

�f�

		eq� 	car l� target�

	cadr l��

	�t

	loop 	cddr l������

� same as� �

Chapter �� Environments and Procedures ���

	define 	property�list�search lis target�

	letrec 		loop 	lambda 	l�

	cond 		null� l�

�f

		eq� 	car l� target�

	cadr l��

	�t

	loop 	cddr l��������

	loop lis��� � start the recursion

The reason we supply a name for a loop in a named let is so that we can have nested loops

with di�erent names� and we can iterate any of the loops by calling it by name�

For example� suppose we want to have a nested pair of loops� but want to be able to bail out of

the iteration of the inner loop� and go directly to the next iteration of the outer loop� We can do

this�

� need example here �

	let outer�loop 		i �����

	let inner�loop 		j �����

	if 	should�abort�inner�loop�

	outer�loop ����� � go directly to next iteration of outer loop

��� � do normal inner loop action

���	inner�loop ���� � iterate inner loop normally

���

��� 	outer�loop ����� � iterate outer loop normally

Some things to notice about Scheme loops�

Loops can have any number of loop variables� each updated in any way you like� This cor�

responds to having a recursive procedure with any number of arguments� and passing it any

values you like at each recursion�

Unlike most languages� loops� each time we iterate a loop� we rebind the loop variable� There�s

a new binding at each iteration� because each iteration is really a call to a procedure that binds

arguments� We don�t bind the loop variable once and side�e�ect it at each iteration�

Since loop bodies are really just procedure bodies� and loop iterations are really just procedure

calls� we can put calls that iterate a loop anywhere in the body� we can have multiple points

in the body that call the procedure to iterate the loop�

Chapter �� Environments and Procedures ���

The variable bindings created at each iteration of a loop are independent� and can be captured

by lambda expressions in the loop body� Each closure created by lambda will capture the

bindings for that iteration of the loop�

��	 Programming with Procedures and Environments

��� do

Scheme provides an iteration construct� do similar to do or for loops in other languages�

� blah blah ��� �

�� Exercises

Chapter �� Recursion in Scheme ���

� Recursion in Scheme

In this chapter� I�ll discuss procedure calling and recursion in more depth� � blah blah blah �

Scheme�s procedure�calling mechanism supports e�cient tail�recursive programming� where recur�

sion is used instead of iteration�

After clarifying how recursion works� I�ll give examples of how to program recursively in Scheme�

�In a later chapter� I�ll show how the mechanisms that support tail recursion also support a

powerful control feature called call�with�current�continuation that lets you implement novel

control structures like backtracking and coroutines�

	�� Subproblems and Reductions
non�tail and tail calls�

In most implementations of most programming languages� an activation stack is used to imple�

ment procedure calling� At a call� the state of the �caller� �calling procedure is saved on the stack�

and then control is transferred to the callee�

Because each procedure call requires saving state on the stack� recursion is limited by the stack

depth� In many systems� deep recursions cause stack over�ow and program crashes� or use up

unnecessary virtual memory swap space� In most systems� recursion is unnecessarily expensive in

space and�or time� This limits the usefulness of recursion�

In Scheme� things are somewhat di�erent� As I noted earlier� recursive calls may be tail recursive�

in which case the state of the caller needn�t be saved before calling the callee�

More generally� whether a procedure is recursive or not� the calls it makes can be classi
ed as

subproblems or reductions If the last thing a procedure does is to call another procedure� that�s

known as a reduction	the work being done by the caller is complete� because it �reduces to� the

work being done by the callee�

For example� consider the following procedures�

	define 	foo�

	bar�

	baz��

Chapter �� Recursion in Scheme ���

	define 	baz�

	bar�

	foo��

Notice that when foo is called� it does two things� it calls bar and then calls baz� After the

call to bar� control must return to foo� so that it can continue and call baz� The call to bar is

therefore a subproblem	a step in the overall plan of executing foo� When foo calls baz� however�

that�s all it needs to do	all of its other work is done�

In a normal programming language implementation� foo�s state would be saved before the call

to baz� as well as before the call to bar� Each call would return control to foo� In the case of the

call to baz� all foo will do is return the result of the call to its caller� That is� all foo does after

the return from baz is to leave the result wherever its caller expects it� and return again to pop a

stack frame o� the activation stack�

In Scheme� things are actually simpler� If the last thing a procedure does is to call another

procedure� the caller doesn�t save its own state on the stack� When the callee returns� it will return

to its caller�s caller directly� rather than to its caller� After all� there�s no reason to return to the

caller if all the caller is going to do is pass the return value along to its caller�

In e�ect� this optimizes away the unnecessary state saving and returning at tail calls�

Consider both foo and baz above� Neither ever returns	each just calls the other� In Scheme�

these two procedures will repeatedly call each other� without saving their state on the stack� produc�

ing an in
nite mutual recursion� Will the stack over�ow� No� Each will save its state before calling

bar� but the return from bar will pop that information o� of the stack� The in
nite tail�calling

beetween foo and baz will not increase the stack height at all�

Above I said that a callee may return to its caller�s caller� but that doesn�t really capture the

extent of what�s going on� In general a procedure may return to its caller �if it was non�tail called�

or it�s caller�s caller �if it was tail�called but its caller wasn�t or it�s caller�s caller�s caller �if it

and it�s caller were both tail�called� and so on� A procedure returns to the last caller that did a

non�tail call�

Because of this �tail call optimization�� you can use recursion very freely in Scheme� which is a

good thing	many problems have a natural recursive structure� and recursion is the easiest way to

solve them�

Chapter �� Recursion in Scheme ���

Notice that this tail call optimization is a feature of the language� not just some implementations	

any implementation of standard Scheme is required to support it� so that you can count on it and

write portable programs that rely on it�

Also notice that the interpreter we presented earlier is tail�recursive� The recursive calls to eval

are tail calls� and since it�s implemented in Scheme� the interpreter relies on the underlying Scheme�s

tail�call optimization� The evaluator thus snarfs the tail�call optimization from the underlying

Scheme system� If you implement a Scheme interpreter in another language� you have to be more

careful� and implement the tail call optimization yourself� This is not actually di�cult� as I�ll show

in the next section�

It�s something of a misnomer to call Scheme�s procedure calling mechanism an �optimization��

What�s really going on is that Scheme simply distinguishes between two things that most languages

lump together	saving the caller�s state� and actually calling the callee� Scheme notices that these

things are distinct� and doesn�t bother to do the former when only the latter is necessary�

A procedure call is really rather like a �safe goto that can pass arguments� control is transferred

directly to the callee� and the caller has the option of saving its state beforehand� �This is safer

than unrestricted goto�s� because when a procedure does return� it returns to the right ancestor in

the dynamic calling pattern� just as though it had done a whole bunch of returns to get there�

	�� The Continuation Chain

In this section� I�ll describe a straightforward implementation of Scheme�s state�saving for pro�

cedure calling� Readers uninterested in implementation issues may want to skip it� It may clarify

things that are discussed later� however� such as call�with�current�continuation and our ex�

ample compiler�s code generation strategy�

In most conventional language implementations� as noted above� calling a procedure allocates

an activation record �or �stack frame� that holds the return address for the call and the variable

bindings for the procedure being called� The stack is a contiguous area of memory� and pushing an

activation record onto the stack is done by incrementing a pointer into this contiguous area by the

size of the stack frame� Removing a stack frame is done by decrementing the pointer by the size of

the stack frame�

Scheme implementations are quite di�erent� As we�ve explained previously� variable bindings

are not allocated in a stack� but instead in environment frames on the garbage�collected heap� This

is necessary so that closures can have inde
nite extent� and can count on the environments they use

Chapter �� Recursion in Scheme ���

living as long as is necessary� The garbage collector will eventually reclaim the space for variable

bindings in frames that aren�t captured by closures�

�Actually� I�m oversimplifying a bit here� Some implementations of Scheme do use a relatively

conventional stack� often so that they can compile Scheme straightforwardly to C� They must pro�

vide tail�call optimization somehow� though� I won�t go into alternative implementation strategies

here�

Scheme implementations also di�er from conventional language implementations in how they

represent the saved state of callers� �In a conventional language implementation� the callers� state

is in two places� the variable bindings are in the callers� own stack frames� and the return address

is stored in the callee�s stack frame�

In a Scheme implementation� the caller�s state is saved in a record on the garbage�collected

heap� called a partial continuation� It�s called a continuation because it says how to resume the

caller when we return into it	i�e�� how to continue the computation when control returns� It�s

called a partial continuation because that record� by itself� it only tells us how to resume the caller�

not the caller�s caller or the caller�s caller�s caller� On the other hand� each partial continuation

holds a pointer to the partial continuation for its caller� so a chain of continuations represents

how to continue the whole computation� how to resume the caller� and when it returns� how to

resume its caller� and so on until the computation is complete� This chain is therefore called a full

continuation�

In most Scheme implementations� a special register called the continuation register is used to

hold the pointer to the partial continuation for the caller of the currently�executing procedure�

When we call a procedure� we can package up the state of the caller as a record on the heap �a

partial continuation� and push that partial continuation onto the chain of continuations hanging

o� the continuation register�

part� cont� 	saved state of caller#s

��$ caller#s caller�

�

�

part� cont� 	saved state of caller#s caller�

��$

�

��������� �

CONT � ����������� part� cont� 	saved state of caller�

���������

Chapter �� Recursion in Scheme ���

�It is often convenient to draw stacks and continuations as growing downward� which is our

convention here	the newer elements are on the bottom�

Note that the continuation register may be a register in the CPU� or it may just be a particular

memory location that our implementation uses for this purpose� The point is just that when we�re

executing a procedure� we always know where to
nd a pointer to the partial continuation that

lets us resume its caller� We will sometimes abbreviate this register�s name as CONT� A typical

implementation of Scheme using a compiler has several important registers that encode the state

of the currently�executing procedure�

The environment register �ENVT holds the pointer to the chain of environment frames that

make up the environment that the procedure is executing in�

The program counter register �PC holds the pointer to the next instruction to execute� In a

normal system that compiles to normal machine code� this is the actual program counter of

the underlying hardware�

The continuation register �CONT� as we�ve said� holds the pointer to the chain of partial

continuations that lets us resume callers� This is very roughly the equivalent of an activation

stack pointer�

Before we call a procedure� we must save a continuation if we want to resume the current

procedure after the callee returns�

Since the important state of the currently�executing procedure is in the registers listed above�

we will create a record that has
elds to hold them� and push that on the continuation chain� We

will save the value of the CONT� ENVT� and PC registers in the partial continuation� then put

a pointer to this new partial continuation in the continuation registers� We also need to save any

other state that the caller will need when it resumes� as suggested by the ellipsis below� �We�ll

discuss what else goes in a partial continuation when we talk about compilers in detail�

Chapter �� Recursion in Scheme ���

old cont�

��$

�

��������� �

��������� �p�cont�� �

CONT � ���������������������� �

��������� cont � �������������

���������

envt � ��������������old envt

���������

pc � ��������������return address

���������

�

� ���

� �

���������

Notice that since we saved the old value of the continuation register in the partial continuation�

that serves as the �next� pointer in the linked list that makes up the full continuation� This is

exactly as it should be� The value of the continuation register is part of the caller�s state� and

saving it naturally constructs a linked list� because each procedure�s state is fundamentally linked

to the state of its caller� Saving the return address is a little bit special	rather than just copying

the program counter and saving it� we must save the address we want to resume at when we resume

this procedure�

Once a procedure has pushed a continuation� it has saved its state and can call another proce�

dure� The other procedure can use the ENVT� CONT� and PC registers without destroying the values

of those registers needed by the caller� This is called a caller saves register usage convention� the

assumption is that the callee is allowed to freely clobber the values in the registers� so it�s the

caller�s responsibility to save any values it will need when it resumes�

To do a procedure return� it is only necessary to copy the register values out of the continuation

that�s pointed to by the cont register� This will restore the caller�s environment and its pointer to its

caller�s continuation� and setting the PC register will branch to the code in the caller where execution

should resume� We often call this �popping� a continuation� because it�s a stacklike operation	

saving a �partial continuation pushes the values in registers onto the front of the �stack�� and

restoring one pops the values back into the registers� �As we will explain later� however� Scheme

continuation chains don�t always observe this simple stack discipline� which is why they can�t be

implemented e�ciently as contiguous arrays�

Chapter �� Recursion in Scheme ���

If we save state and do a procedure call� and before returning our caller saves its state and does

a procedure call� the chain of continuations gets longer� For the most part� this is like pushing

activation information on a stack�

��$

�

����������� �

� p�cont� � �

����������� �

cont � ��������������

�����������

envt � ���������������old envt

�����������

pc � ���������������return address

�����������

�

� ���

� �

�����������

�

�$

$

$

$

$

�

����������� �

��������� � p�cont� � �

cont � ������������������������ �

��������� cont � ���������#

�����������

envt � ���������������old envt

�����������

pc � ���������������return address

�����������

�

� ���

� �

�����������

Chapter �� Recursion in Scheme ���

Notice that when we say we save the �state� of the caller� we mean the values in our important

registers� but we don�t directly save particular variable values	when we save the environment

pointer� we don�t save the values in the bindings in the environment� If other code then executes

in that same environment and changes those values� the new values will be seen by this procedure

when it returns and restores the environment pointer� This policy has two important consequences�

�� we can save an environment pointer into a continuation very quickly� and restore it quickly�

because we�re just saving and restoring one pointer� and

�� it ensures that environments have the right semantics� closures that live in the same environ�

ment should see each others� changes to variables� This is one of the ways that procedures are

supposed to be able to communicate	by operating on variables that they can see�

Executing a return ��popping a continuation� does not modify the partial continuation being

popped	it just involves getting values out of the continuation and putting them into registers�

Continuations are thus created and used nondestructively� and the continuations on the heap form

a graph that re�ects the pattern of non�tail procedure calls� Usually� that graph is just a tree�

because of the tree�like pattern of call graphs� and the current �stack� of partial continuations is

just the rightmost path through that graph� i�e�� the path from the newest record all the way back

to the root�

Consider the following procedures� where a calls b twice� and each time b is called� it calls c

twice�

	define 	a�

	b�

	b�

�t�

	define 	b�

	c�

	c�

�t�

	define 	c�

�f�

All of these calls are non�tail calls� because none of the procedures ever ends in a �tail call�

Chapter �� Recursion in Scheme ���

Suppose we call a after pushing a continuation for a�s caller� then a calls b the
rst time� a

will push a continuation to save its state� then call b� While executing b� b�s state will be in the

registers� including a pointer to the continuation for a in the CONT register�

cont for a#s caller

�

�

cont� for a

��$

����� �

CONT � ��������

�����

b will then push a continuation and call c�

cont for a#s caller

�

�

cont� for a

�

�

cont� for b

��$

�

�����

CONT � � �

�����

When c returns� it will restore b�s state by popping the partial continuation�s values into regis�

ters� At this point� the CONT register will point past the continuation for b to the continuation for

a�

Chapter �� Recursion in Scheme ���

cont for a#s caller

�

�

cont� for a

� ��$

� �

cont� for b �

�

����� �

CONT � �����������

�����

Then b will push another continuation and call c again�

cont for a#s caller

�

�

cont� for a

� $

� $

cont� for b cont for b

��$

�

����� �

CONT � ��������������

�����

Again� c will return� restoring b�s state� and the CONT register will point past the continuation

for b to the continuation for a�

Chapter �� Recursion in Scheme ���

cont for a#s caller

�

�

cont� for a ���������

� $ �

� $ �

cont� for b cont for b �

�

����� �

CONT � �����������������������

�����

After returning to a� the CONT register will point past the continuation for a to the continuation

for a�s caller� Then before a calls b again� it will push another continuation to save its state�

cont for a#s caller

� $

� $

cont� for a cont for a

� $ ��$

� $ �

cont� for b cont for b �

�

����� �

CONT � ��������������������������

�����

Then a will return and the CONT register will point past the continuation for a to the continuation

for a�s caller�

Chapter �� Recursion in Scheme ���

cont for a#s caller ����

� �

� �

cont� for a �

� $ �

� $ �

cont� for b cont for a �

�

����� �

CONT � ��������������������������������

�����

This continues in the obvious way� so that at the time of the fourth and last call to C� the

continuations on the heap look like this�

cont for a#s caller

� $

� $

cont� for a cont� for a

� $ � $

� $ � $

cont for b cont for b cont for b cont for b

��$

�

����� �

CONT � ������������������������������������

�����

Most of the time� the rest of this graph becomes garbage quickly	each continuation holds

pointers back up the tree� but nothing holds pointers down the tree� Partial continuations therefore

usually become garbage the
rst time they�re returned through�

The fact that this graph is created on the heap will allow us to implement call�with�current�

continuation� a�k�a� call�cc� a very powerful control construct� call�cc can capture the control

state of a program at a particular point in its execution by pushing a partial continuation and saving

a pointer to it� Later� it can magically return control to that point by restoring that continuation�

instead of the one in the continuation register� �We will discuss call�cc in detail in Chapter XX�

Chapter �� Recursion in Scheme ���

	�� Exploiting Tail Recursion

In an earlier section� we presented example recursive implementations of several Scheme func�

tions� some of them were tail recursive� and some not�

At
rst glance� many routines seem as though they can�t conveniently be coded tail recursively�

On closer inspection� many of them can in fact be coded this way�

����� Passing Intermediate Values as Arguments

������� Summing a List

Suppose we want to sum a list of numbers� The most obvious way of doing it is the way we did

it earlier� like this�

	define 	list�sum lis�

	if 	null� lis�

�

	� 	car lis�

	list�sum 	cdr lis�����

The problem with this code is that it�s not particularly e�cient� because it�s not tail recursive�

After each recursive call to list�sum� we must return to do the addition that adds one element to

the sum of the rest of the list� We�re adding the elements of the list back�to�front� on the way back

up from nested recursion� �This means that Scheme must push a partial continuation before every

recursive call� and each one must be popped when we�re
nished� to return the sum back from each

call to its caller�

We can write a tail�recursive version of list�sum that adds things in front�to�back order instead�

The trick is to do the addition before the tail call� and to pass the sum so far to the recursive call�

i�e�� to pass it forward as an argument until a non�tail call returns it�

To do this� we have to keep a running sum� and each recursive call must pass it as an argument

to the next� To start it o�� we have to have a �running sum� of ��

We can do this by de
ning two procedures� The one that does the real work takes a list and

a running sum� adds one element to the running sum� and tail�calls itself to add the rest of the

Chapter �� Recursion in Scheme ���

elements to the running sum� When it reaches the end of the list� it just returns the value� �Scheme

doesn�t need to save a partial continuation before each call� since only the last call ever returns�

For convenience� we also wrap this procedure up in a friendlier procedure that will start o� the

recursion� by supplying an initial �running sum� of ��

� a tail�recursive list summing procedure

	define 	lsum lis sum�so�far�

	cond 		null� lis�

sum�so�far�

	else

	lsum 	cdr lis�

	� sum�so�far 	car lis������

� a friendly wrapper that supplies an initial running sum of �

	define 	list�sum lis�

	l�s�aux lis ���

We can make this cleaner by encapsulating lsum� since it�s only used by list�sum� We make

lsum a local procedure using letrec and lambda�

	define 	list�sum lis�

� define a local
 tail�recursive list summing procedure

	letrec 		lsum 	lambda 	lis sum�so�far�

	cond 		null� lis�

sum�so�far�

	else

	lsum 	cdr lis�

	� sum�so�far 	car lis��������

	lsum lis ���� �� start off recursive summing with a sum of �

We can write this more clearly using named let�

Chapter �� Recursion in Scheme ���

	define 	list�sum lis�

	let loop 		lis lis�

	sum�so�far ���

	cond 		null� lis�

sum�so�far�

	else

	loop 	cdr lis�

	� sum�so�far 	car lis�������

Notice that here we�re using two loop variables� rebound at each iteration� One keeps track of

the remaining part of the original list� and the other the sum of the list items we�ve seen so far�

Also notice that the version using named let is exactly equivalent to the version using explicit

tail�recursion�

������� Implementing length tail�recursively

Recall that in � Chapter whatever � we implemented length this way�

	define 	length lis�

	if 	null� lis�

�

	� � 	length 	cdr lis�����

This de
nition looks a lot like the de
nition of list�sum� and has the same basic problem� By

using straightforward recursion �adding one to the length of the rest of the list� we�re ensuring

the addition happens back�to�front� We can compute the list length front to back by passing the

running sum forward through tail recursions� as an argument� Each tail call will add to the running

sum� and pass it forward� When the last tail call returns to its caller� it just returns the sum�

To do this� it�s convenient to write the length procedure as a wrapper around a two�argument

procedure that passes the running sum �as well as the remainder of list to recursive calls to itself�

Chapter �� Recursion in Scheme ���

	define 	length lis�

	letrec 		len 	lambda 	lis length�so�far�

	if 	null� lis�

length�so�far

	len 	cdr lis�

	� � length�so�far�������

	len lis ���

Or equivalently� using named let�

	define 	length lis�

	let loop 		lis lis�

	length�so�far ���

	if 	null� lis�

len�so�far

	loop 	cdr lis�

	� 	car lis� length�so�far�����

����� reduce

In this section� I�ll give an extended example of the use of higher�order functions to express pat�

terns common to many functions� and customizing general procedures with procedural arguments

and closure creation�

Consider the following function to sum the elements of a list

	define 	list�sum lis�

	if 	null� lis�

�

	� 	car lis�

	list�sum 	cdr lis�����

Given this de
nition�

	list�sum #	�� �� �� ����

is equivalent to

Chapter �� Recursion in Scheme ���

	� �� 	� �� 	� �� 	� �� ������

� the following couple of examples are now redundant with earlier material��� trim and refer

back� �

Now consider a very similar function to multiply the elements of a list� where we�ve adopted the

convention that the product of a null list is �� �� is probably the right value to use� because if you

multiply something by � you get back the same thing	just as if you add something to � you get

back the same thing�

	define 	list�prod lis�

	if 	null� lis�

�

	� 	car lis�

	list�prod 	cdr lis�����

Given this de
nition�

	list�prod #	� � � ���

is equivalent to

	� � 	� � 	� � 	� � �����

Given these de
nitions� you can probably imagine a very similar function to subtract the ele�

ments of a list� or to divide the elements of a list� For subtraction� the base value for an empty list

should probably be zero� because subtracting zero doesn�t change anything� For division it should

probably be one�

At any rate� what we want is a single function that captures the pattern

	op thing�	op thing� ���	op thingn base�thing������

We can write a higher�order procedure reduce that implements this pattern in a general way�

taking three arguments� any procedure you want successively applied to the elements of a list� an

appropriate base value to use on reaching the end of the list� and the list to do it to�

Chapter �� Recursion in Scheme ���

	define 	reduce fn base�value lis�

	if 	null� lis�

base�value

	fn 	car lis�

	reduce fn base�value 	cdr lis�����

This is a very general procedure� that can be used for lots of things besides numerical operations

on lists of numbers� it can be used for any computation over successive items in a list�

� need to check the following couple of examples	they�re o� the top of my head �

What does 	reduce cons #	� #	a b c d�� do� It�s equivalent to 	cons #a 	cons #b 	cons #c

	cons #d #	����� That is� 	reduce cons #	� list� copies a list� We could de
ne list�copy that

way�

	define 	list�copy lis�
	reduce cons #	� lis��

We could also de
ne append that way� because reduce allows you to specify what goes at the

end of a list	we don�t have to end our list with #	�� Here�s a two�argument version of append�

	define 	append list� list��
	reduce cons list� list���

The reduction of a list using �lambda �x rest �cons �! x � rest constructs a new list whose

elements are twice the values of the corresponding elements in the original list�

Scheme�	reduce 	lambda 	x rest�

	cons 	� x �� rest��

#	�

#	� � � ���

	� � � &�

The reduce procedure above is handy� because you can use it for many di�erent kinds of

computations over di�erent kinds of lists values� as long as you can process the elements �and

construct the result front�to�back� It�s a little awkward� though� in that each time you use it� you

have to remember the appropriate base value for the operation you�re applying to a list�

Chapter �� Recursion in Scheme ���

Sometimes it would be preferable to come up with a single specialized procedure like list�sum�

which implicitly remembers which function it should apply to the list elements �e�g�� � and what

base value to return for an empty list �e�g�� ��

We can write a procedure make�reducer that will automatically construct a reducer procedure�

given a function and a base value� Here�s an example usage�

Scheme� 	define list�sum 	make�reducer � ���

list�sum

Scheme� 	define list�product 	make�reducer � ���

list�copy

Scheme� 	list�sum #	� � � ���

��

Scheme� 	list�product #	� � � ���

��

Make sure you understand the expressions above� The de
ne forms are not using procedure

de
nition syntax	they�re using plain variable de
nition syntax� but the initial value expressions

return procedures constructed by make�reducer� If we hadn�t wanted to de
ne procedures named

list�sum and list�product� and hang on to them� we could have just taken the procedures returned

by make�reducer and called them immediately�

Scheme� 		make�reducer � �� #	� � � ���

��

Scheme� 		make�reducer � �� #	� � � ���

��

This is very much like calling our original reduce procedure� except that each time we�re con�

structing a specialized procedure that�s like reduce customized for particular values of its
rst two

arguments� then we call that new� specialized procedure to do the work on a particular list�

Here�s a simple de
nition of make�reducer in terms of reduce�

Chapter �� Recursion in Scheme ���

	define 	make�reducer fn base�value�

	lambda 	lis�

	reduce fn base�value lis���

Notice that we are using procedure de
nition syntax here� so the lambda in the body will create

and return a closure�

But suppose we don�t already have a reduce procedure� and we don�t want to leave one lying

around� A cleaner solution is to de
ne the general reduce procedure as a local procedure� and create

closures of it in di�erent environments to customize it for di�erent functions and base values�

	define 	make�reducer fn base�value�

	letrec 		reduce 	lambda 	lis�

	if 	null� lis�

base�value

	fn 	car lis�

	reduce 	cdr lis�������

reduce�� � return new closure of local procedure

This procedure uses closure creation to create a customized version of reduce When make�

reducer is entered� its arguments are bound and initialized to the argument values	i�e�� the

function and base value we want the custom reducer to use� In this environment� we create a

closure of the standard reducer procedure using lambda� We wrap the lambda in a letrec so that

the reducer can see its own name� Notice that since reduce is a local procedure� it can see the

arguments to make�reducer� and we don�t have to pass it those arguments explicitly�

By using local procedure de
nition syntax	which not all Schemes support	we can write this

as�

	define 	make�reducer fn base�value�

	define 	reduce lis�

	if 	null� lis�

base�value

	fn 	car lis�

	reduce 	cdr lis�����

reduce�� �return new closure of local procedure

Make sure that you understand that these are equivalent	the local procedure define is equiva�

lent to a letrec and a lambda� and in either case the closure created �by the lambda or the define

will capture the environment where the arguments to make�reducer are bound�

Chapter �� Quasiquotation and Macros ���

	 Quasiquotation andMacros

Scheme provides facilities for transforming expressions automatically to create new expressions�

These facilities are called quasiquotation and syntax extension �or �macros�� Transformational

programming is one of the most powerful features of Scheme�

Quasiquotation allows you to specify patterns that can be used to construct data structures�

and also specify how to
ll in �holes� in the patterns� In e�ect� you can de
ne a template for a

data structure� much like a quoted data structure� but also specify how to
ll in holes to create

variations on the data structure�

Syntax extension allows you to do something very similar for code� You can write �macros� that

specify most of an expression� and you can
ll in the holes in these templates to create particular

expressions� With macros� you can write �templates� for programs� which you can customize by

lling in the holes� This lets you create both code�structuring and data�structuring facilities that

express stereotyped patterns with variations�

� Scheme macros are actually more powerful than this� however� because you can use them to

analyze code before transforming it��� sort of��� �

With Scheme macros� you can de
ne new control constructs� data structuring facilities� full�

blown object systems with inheritance� parameterized coding facilities �like C�� templates� and

other more application�speci
c facilities to make your life easier�

��� quasiquote

The special form quasiquote behaves a lot like quote� allowing you to write out literal ex�

pressions in your program� using the standard textual representation of s�expressions� Scheme

automatically constructs the data structures� quasiquote is much more powerful than quote�

however� because you can write expressions that are mostly literal� but leave holes to be
lled in

with values computed at runtime�

For example� the value of the expression 	quote 	foo bar baz�� is a list 	foo bar baz�� Like�

wise� the value of the expression 	quasiquote 	foo bar baz�� is a list 	foo bar baz��

Chapter �� Quasiquotation and Macros ���

There�s a big di�erence� though� quote constructs an s�expression at compile time� when the

procedure containing the quote expression is compiled�� quasiquote constructs an s�expression

at run time� when the quasiquote form is executed� This allows Scheme to �customize� a data

structure� so that you actually get a di�erent data structure each time you execute the same

quasiquote form� You can use the unquote operator to specify which parts should be customized�

For example� suppose you want to write a procedure that creates a three�element list whose
rst

and last elements are the literal symbols foo and baz� but whose middle element is the value of

the variable bar�

Try this in your scheme system�

Scheme�	define bar ��

baz

Scheme�	quasiquote 	foo 	unquote bar� baz��

	foo � baz�

Without quasiquote and unquote� you could get the same e�ect by replacing 	quasiquote

	foo 	unquote bar� baz�� with 	list 	quote foo� bar 	quote baz��� or the equivalent sugared

form 	list #quote foo #baz�� For this simple example� that�s probably at least as clear� because

the use of 	quasiquote ���� and 	unquote ���� is rather clunky�

To make it easier to write quasiquoted expressions� Scheme provides a little syntactic sugar�

Just as you can use a single quote character and write #	foo bar baz� instead of 	quote 	foo bar

baz�� you can use a backquote character �+ to replace 	quote ���� and a comma character �

to replace 	unquote �����

Now we can do this�

Scheme�+	foo
bar baz�

	foo � baz�

� This is something of an oversimpli
cation� The quoted expression is generally converted to a

list at read time� and the value of the quote expression may be the very same data structure� or

it may be a copy made later during compilation or interpretation� At any rate� you should only

count on the structure of a quoted data structure� not its identity� A compiler or interpreter is

allowed to return the same list for di�erent quoted data structures with the same structure�

Chapter �� Quasiquotation and Macros ���

This is much clearer� Intuitively� the backquote character means �construct an s�expresson of

the following �literal form� except where commas appear�� and the comma character means �use

the value of the following expression here� instead of using it literally��

Now you can see why it�s called quasiquote	it�s a way of writing �mostly quoted� expressions�

instead of pure literals� You can turn quoting o� where you want to� This is particularly useful in

constructing s�expressions that are in fact mostly literal� especially if they�re complicated�

For a simple example� suppose you want to write a procedure that constructs a greeting to print

to a user� The greeting is always mostly the same� but includes the current day of the week�

Scheme� 	define day�of�week #Sunday�

day�of�week

Scheme� 	define 	make�greeting�

+	Welcome to the FooBar system We hope you

enjoy your visit on this fine
day�of�week���

greet

Scheme�	make�greeting�

	Welcome to the FooBar system We hope you enjoy your visit on this

fine Sunday�

Scheme�	set day�of�week #Monday�

day�of�week

Scheme�	make�greeting�

	Welcome to the FooBar system We hope you enjoy your visit on this

fine Monday�

You may have notice that this is somewhat similar to formatted output in other languages

you�ve used� like C� �C�s printf procedure takes a string that is �mostly quoted� but has special

escape characters in it to tell where to substitute the printed representation of runtime values� For

example� if day�of�week holds a pointer to the string �Sunday�� printf	�Welcome� It#s �s��

day�of�week� prints �Welcome� It#s Sunday��

The nice thing about Scheme quasiquotation is that it works on normal data structures� For

example� suppose you want to write a routine that creates an association list with several literal

elements� and a several customized ones�

Chapter �� Quasiquotation and Macros ���

	define 	create�shipping�employee�association name�

+		name
name�

	employee�id�no
	get�next�employee�id��

	department shipping�

	hire�date
	get�day�
	get�month�
	get�year����

�Notice that here that most of the unquoted expressions are calls to procedures� whose return

values will be used� We can
ll the holes in our templates with anything we want� not just variable

values�

Depending on the value of the variable the values returned by the procedure calls� 	new�

shipping�employee�alist �Philboyd Studge�� will return something like

		name �Philboyd Studge��

	employee�id�no ��� �

	department shipping�

	hire�date �& August �%% ��

Here it should be clear that quasiquote has let us write out a stereotyped data structure� and

unquote lets us
ll in the varying parts� More complicated examples would be make this bene
t

clearer� but I�ll leave them to your imagination�

����� unquote�splicing

Scheme provides a variant of unquote for use when you want to merge an unquoted list into a

literal list� rather than nesting it�

For example� suppose you want to embed a phrase in a sentence� where the phrase is a list of

symbols� and the sentence is a list of symbols�

If you tried this with unquote� you�d get a nested list� rather than just a list of symbols�

Chapter �� Quasiquotation and Macros ���

Scheme� 	define phrase�of�the�day #	the Lord helps those who take a big

helping for themselves��

phrase�of�the�day

Scheme� +	Remember that
phrase�of�the�day�

	Remember that 	the Lord helps those who take a big helping for

themselves��

Rather than using
expr�� we can use use 	unquote�splicing expr�� or the syntactically sug�

ared form�
�expr�

Scheme� +	And remember that
�phrase of the day�

	And remember that the Lord helps those who take a big helping for

themselves�

��� De�ning New Special Forms

Sometimes we want to write stereotyped code� not just stereotyped data structures� As with

data� we sometimes want part of our stereotyped piece of code to vary� We can do this with syntax

extensions� also known as macros�

�If you�re familiar with macros from C� don�t sco�� Macros in C are stunningly lame and hard to

use compared to Lisp or Scheme macros� Read on to
nd out what you�ve been missing� If you�re

familiar with Lisp macros� but have never done advanced programming with them� you probably

don�t realize how powerful they are	Lisp macros are so error�prone that people often avoid them�

Scheme macros are very powerful� but automate away some of the tricky parts�

Macros are syntax extensions to a programming language� expressed as a translation of expres�

sions� By writing a macro� what you�re really doing is extending the functionality of the compiler

or interpreter	you�re telling it how to compile �or interpret a new construct� by telling it how to

rewrite that construct into something it already knows how to compile or interpret�

�Conceptually� de
ning a macro is extending the compiler	you�re telling the parser how to

recognize a new construct� to change the grammar of the language� and also specifying how to

generate code for the new construct� This is something you can�t do in most languages� but it�s

easy in Scheme�

Chapter �� Quasiquotation and Macros ���

Scheme recognizes macro de
nitions� and then uses them to recognize and translate the new

constructs into other constructs� The interpreter or compiler�s process of translating a level con�

structs is often called �macro expansion�� despite the fact that the resulting expression may not

be bigger than the original expression� Macroexpansion can be recursive� because macros can use

macros� and a macro can even use itself� like a recursive procedure�

Syntax extension is powerful� and hence somewhat dangerous when used too casually� Be aware

that when you write a macro� you can change the syntax of your programming language� and that

can be a bad thing	you and others may no longer be able to easily understand what the program

does� Used judiciously� however� such syntactic extensions are often just what you need to simplify

your programs� They are especially useful for writing programs that write programs� so that you

can avoid a lot of tedious repetitive coding�

Macros are so useful that they�re usually used in the implementation of Scheme itself� Most

Scheme compilers actually understand only a few special forms� and the rest are written as macros�

In a later chapter� I�ll describe some advanced uses of macros� which let your �roll your own�

language with powerful new features�

����� Macros vs� Procedures

Why do we want macros� In Scheme� the main code abstraction mechanism is procedural

abstraction� e�g� using define or lambda to write procedures that do stereotyped things� In a

sense� we �specialize� procedures by passing them argument values	a procedure can do di�erent

things depending on the values it�s given to work with� We can also �specialize� procedures by

creating closures in di�erent environments� Isn�t this enough�

Not in general� While procedural abstraction is very powerful� there are times when we may

want to write stereotyped routines that can�t be written as procedures�

Suppose� for example� you have a Scheme system which gives you things like let and if� but

not or� �Real Schemes all provide or� but pretend they don�t� It makes a nice� simple example�

You want an or construct �rather like the one actually built into Scheme� This or can take two

arguments� it evaluates the
rst one and returns the result if it�s a true value� otherwise it evaluates

the second one and returns that result�

Chapter �� Quasiquotation and Macros ���

Notice that you can�t write or as a procedure� If or were a procedure� both of its arguments

would always be evaluated before the actual procedure call� Since or is only supposed to evaluate

its second argument if the
rst one returns �f� it just wouldn�t work�

If Scheme didn�t have or� you could fake it at any given point in your program� by writing an

equivalent let expression with an if statement in it�

For example� suppose you wanted to write the equivalent of 	or 	foo�� 	bar����

As a
rst try� you might do this�

	if 	foo��

	foo��

	bar���

That is� test 	foo��� and return its value if it�s a true value� That�s not really quite right

though� because this if statement evaluates foo� twice� once to test it� and once to return it�

We really only want to evaluate it once	if 	foo�� is an expression with side e�ects� evaluating

it twice could make the program incorrect as well as ine�cient�

To avoid this� we can always evaluate the
rst expression just once to get the value� and store

that value in a temporary variable so that we can return it without evaluating it again�

You could instead write

	let 		temp 	foo����

	if temp

temp

	bar����

This let expression gives the same e�ect as 	or 	foo�� 	bar���� because it evaluates foo

exactly once� and then tests the value� if the value is true� it returns that value� �The use of a let

variable to stash the value allows us to test it without evaluating 	foo�� again� If the value is �f�

it evaluates 	bar�� and returns the result�

This is the transformation we�d like to be able to automate by de
ning or as a macro�

Chapter �� Quasiquotation and Macros ���

Here�s a simple version of or written as a macro� I�ve called it or� to distinguish it from Scheme�s

normal or�

	define�syntax or�

	syntax�rules 	�

		or� a b� � pattern

	let 		temp a�� � template

	if temp

temp

b�����

What we�re saying to Scheme is that we want to de
ne the syntax of or by giving syntax rules

for recognizing it and translating it� For this simple version of or� we only need one rule� which

says to translate 	or a b� into the desired let expression�

	or a b� is called the rule�s pattern� which speci
es what counts as a call to the or macro� and

the let expression is the rule�s template� which speci
es the equivalent code that Scheme should

translate calls into�

The variables a and b are called pattern variables� They stand for the actual expressions passed

as arguments to the macro� They are �matched� to the actual expressions when the pattern is

recognized� and when the template is interpreted or compiled� the actual expressions are used

where the pattern variables occur�

You can think of this in two steps� When a macro is used�

�� the template is copied� except that the pattern variables are replaced with the macro�s argument

expressions�

�� the result is interpreted �or compiled in place of the call expression�

�It�s really not quite this simple� but that�s the basic idea�

In some ways� macro arguments are a lot like procedure arguments� but in other ways they�re

very di�erent� The pattern variables are not bound at run time� and don�t refer to storage locations�

They�re only used in translating a macro call into the equivalent expression�

Always remember that arguments to a macro are expressions used in transforming the code�

and then the code is executed� �For example� the output of the or macro doesn�t contain a variable

named a� a is just a shorthand for whatever expression is passed as an argument to the macro� In

Chapter �� Quasiquotation and Macros ���

the example use 	or 	foo�� 	bar���� the expression 	foo�� is what gets evaluated at the point

where a is used in the macro body�

This is why our macro has to use a temporary variable� like the hand�written equivalent of or�

If we tried to write the macro like a procedure� without using a temporary variable� like this

	define�syntax or

	syntax�rules 	�

		or a b�

	if a

a

b����

then 	or 	foo�� 	bar��� would be translated into

	if 	foo��

	foo��

	bar���

As with the buggy handwritten version� 	foo�� would be evaluated twice when this expression

was evaluated�

�This is the most common mistake in writing macros	forgetting that while macros give you

the ability to control when argument expressions are evaluated� they also require you to control it�

It�s safe to use a procedure argument multiple times� because that�s just referring to a value in a

run�time binding� Using a macro argument causes evaluation of the entire argument expression at

that point�

We can make a better or by using more rules� We might want or to work with any number of

arguments� so that

�� or of zero arguments returns �f� because it has zero true arguments�

�� or of one argument is equivalent to that argument	it�s true if and only if that argument is

true�

�� or of two or more arguments evaluates its
rst argument� and returns its value if it�s true�

Otherwise� it computes the or of the rest of its arguments� and returns its result�

Here�s the Scheme de
nition with these three rules�

Chapter �� Quasiquotation and Macros ���

	define�syntax or

	syntax�rules 	�

		or� � OR of zero arguments

�f� � is always false

		or a� � OR of one argument

a� � is equivalent to the argument expression

		or a b c ���� � OR of two or more arguments

	let 		temp a�� � is the first or the OR of the rest

	if temp

temp

	or b c ���������

Notice that this de
nition is recursive� �The third rule�s template uses the ormacro recursively�

If we hand or four arguments� like this� 	or foo bar baz quux�� it should be equivalent to 	or

foo 	or bar 	or baz 	or quux�����

Scheme will use recursion to translate the expression� one step at a time� When Scheme en�

counters a macro call� it transforms the call into the equivalent code� using the appropriate rule�

It then interprets �or compiles the resulting expression� If the result itself includes a macro call�

then the interpreter �or compiler calls itself recursively to translate that before evaluating it� For

a correctly written macro� the recursive translation will eventually �bottom out� when no more

macro calls result� and the code will be evaluated in the usual way�

�As I�ll show later� this
ts in very neatly with the interpreter�s or compiler�s recursive evaluation

of expressions�

This recursion is recursion in Scheme�s transformation of the call expression into equivalent

code	it doesn�t mean that the resulting code is recursive� A Scheme compiler will do all of the

recursive transformation at compile time� so there�s no runtime overhead� Of course� the recursion

has to terminate� or the compiler will not be able to
nish the translation�

In this de
nition of or� the third rule contains the symbols c ���� The Scheme identi
er ��� is

treated specially� to help you write recursive rules� �In previous examples� I used ��� as an ellipsis

to stand for code I didn�t want to write out� but here we�re usuing the actual Scheme identi�er

���� it�s actually used in the Scheme code for macros�

Scheme treats a pattern variable followed by ��� as matching zero or more subexpressions� In

this or macro� c ��� matches all of the arguments after the
rst two�

Chapter �� Quasiquotation and Macros ���

Scheme matches 	or foo bar baz quux� by the third rule� whose pattern 	or a b c ����� be�

cause it has at least two arguments� In applying the rule� Scheme matches a to foo� b to bar� and

c ��� to the sequence of expressions baz bleen�

� This is similar to how you use unquote�splicing inside backquote	you can splice a list into

a list at the same level� rather than nesting it� �

The result of processing this or is

	let 		temp foo��

	if temp

temp

	or bar baz quux���

Now Scheme evaluates this expression�

But there�s another or in there	when Scheme gets to 	or bar baz quux� it will match the

third rule again� with a matched to bar� b matched to baz� and c ��� being matched to just quux�

The result of this macro�processing step is

	let 		temp foo��

	if temp

temp

	let 		temp bar��

	if temp

temp

	or baz quux�����

And the new let expression is evaluated�

There or is again� so Scheme will treat 	or baz quux� the same way� again using the third

rule	this time matching a to baz� b to quux� and c ��� to nothing at all� producing

Chapter �� Quasiquotation and Macros ���

	let 		temp foo��

	if temp

temp

	let 		temp bar��

	if temp

temp

	let 		temp baz�

	if temp

temp

	or quux��������

And this will be evaluated�

Now the resulting or matches the second rule in the or macro� because it has only one argument

quux� which is matched to a� The whole translation is therefore�

	let 		temp foo��

	if temp

temp

	let 		temp bar��

	if temp

temp

	let 		temp baz�

	if temp

temp

quux�������

There are no more macro calls here� so the recursion terminates�

You might have noticed that the example translation of 	or foo bar baz quux� has several

di�erent variables named temp in it� You might have wondered if this could cause problems	is

there a potential for accidentally referring to the wrong variable in the wrong place in the code

generated by a macro�

The answer no� Scheme�s macro system actually does some magic to avoid this� which I�ll discuss

later in a later section� Scheme actually keeps track of which variables are introduced by di�erent

applications of macros� and keeps them distinct	the di�erent variables named temp are treated

as though they had di�erent names� so that macros follow the same scope rules as procedures�

�Scheme macros are said to be hygienic� what that really means is that they respect lexical scope�

Chapter �� Quasiquotation and Macros ���

You can think of this as a renaming� as though Scheme had sneakily changed the names each

time the macro was applied to transform the expression� and the result were

	let 		temp�� foo��

	if temp��

temp��

	let 		temp�� bar��

	if temp��

temp��

	let 		temp�� baz�

	if temp��

temp��

quux�������

Scheme implements the same scoping rule for macros and their arguments as for procedures and

their arguments� When you call a procedure� the argument expressions are evaluated at the call

site� i�e�� in the call site environment� and the values are passed to the procedure	the environment

inside the called procedure doesn�t a�ect the meaning of the argument expressions� Likewise

In writing macros like or� we want to control when and whether the arguments are evaluated�

but otherwise we want them to mean the same thing they would if they were arguments to a

procedure�

For example� suppose we call or with an argument expression that happens to use a name

that�s used inside or� or uses a local variable named temp� and we might just happen to pass it an

expression using the name temp�

Consider the following procedure� which uses local variables perm and temp� and calls or in their

scope�

	define 	employee� person�

	let 		perm 	member person permanent�employees��

	temp 	member person temporary�employees���

	or perm temp��

If we translated the or macro naively� without worrying about accidental naming con�icts� we�d

get this�

Chapter �� Quasiquotation and Macros ���

	define 	employee� person�

	let 		perm 	member person permanent�employees��

	temp 	member person temporary�employees���

	let 		temp perm�

	if temp

temp

temp���

�This is not what R�RS Scheme macros do�

Note what�s wrong here� The name temp was passed into the macro from the call site� but it

appeared in the body of the macro inside the let binding of temp� At the call site� it referred to

the �outer� temp� but inside the macro� it turne out to refer to something else	in the process of

moving the expression around� we accidentally changed its meaning�

��� Implementing More Scheme Special Forms

As examples of Scheme macros� I�ll show how to implement several special forms in terms of

lambda� This is how most real Scheme compilers work	the compiler itself only �understands� how

to compile a few special forms directly� but the others can be de
ned as macros�

Traditionally� the compiler understands lambda� and all other binding forms are implemented

in terms of lambda and procedure calling� The compiler must also understand a few other special

forms� if� set� quote� a simple version of define � did I leave one out� ��

����� let

Recall that in chapter � whatever �� I explained how the semantics of let can be explained in

terms of lambda� For any let expression� which binds variables and evaluates body expressions

in that scope� there is an exactly equivalent expression using lambda and procedure calling� The

lambda creates a procedure which will bind the variables as its argument variables� and execute

the body of the let� This lambda is then used in a combination	calling the procedure makes it

bind variables when it accepts arguments�

Chapter �� Quasiquotation and Macros ���

	define�syntax let 	�

	syntax�rules

		� 		var value�expr� ���� body�expr ���� � pattern

		lambda 	var ����

body�expr ����

	value�expr ��������

Here I�ve used an underscore to stand for the keyword let in the macro call pattern� This is

allowable� and recommended� because it avoids having to write the keyword in several places� �If

you had to write out the keyword in each pattern� it would make it more di�cult and error�prone

to change the name of a macro�

I�ve also taken advantage of the fact that Scheme is pretty smart about patterns using the ���

�ellipsis symbol� The pattern has two ellipses� One matches any number of binding forms �variable

names and initial value expressions� the other matches any number of body expressions�

The body expressions matched by body�expr ��� are simply used in the body of the lambda

expression�

The expressions matched by 	var value�expr� ��� are used di�erently� however	they are not

simply substituted into the macro template� Instead� 	var ���� is used to generate the argument

list for the lambda� and value�expr ��� is used to generate the list of initial expressions�

Scheme�s macro system is smart enough to
gure out what�s going on� If the pattern contains

an ellipsis following a compound form �like 	var init�expr� ���� and the template uses one of

the pattern variables from that compound form �followed by an ellipsis� then Scheme assumes you

want the corresponding part of each form matched by the pattern form�

If we think of the expressions as s�expressions� we�ve matched a pattern that is one list of two�

element lists� and restructured it into two separate lists of elements� �That is� we�re going from a

list of cars and cadrs to a list of cars and a list of cadrs�

As an example of use� consider

	let 		var�a 	some�procedure foo��

	var�b 	some�procedure bar���

	quux var�a�

	quux var�b��

Chapter �� Quasiquotation and Macros ���

which translates to

		lambda 	var�a var�b�

	quux var�a�

	quux var�b��

	some�procedure foo�

	some�procedure bar��

� The following is out of place	here I should just be showing some uses of macros� The problem

is that I don�t want to lie and pretend that it�s all very simple	Scheme does something sophisticated

when you write binding contstructs as macros���

This stu� will all be clearer after I�ve talked about hygiene problems with Lisp macros� and

laziness and call�by�name��� how to fwd ref gracefully� �

An extraordinarily astute and thoughtful reader might wonder if there�s something wrong here�

�Luckily� there�s actually nothing to worry about� Recall that when discussing or� I said that

Scheme is careful to treat names introduced by a macro as though they were distinct� e�ectively

renaming variables introduced in a macro� What about the argument variables to lambda in this

example� One might think var�a and var�b would just be renamed and we�d get�

		lambda 	var�a�� var�b���

	quux var�a�

	quux var�b��

	some�procedure foo�

	some�procedure bar��

Clearly� this isn�t what we want	we want var�a and var�b in the lambda body to refer to the

variables introduced in by lambda	that�s what it�s for�

Scheme�s macro processor is smart enough to infer that this is what you want� When you write

a macro that accepts a name as an argument and binds it� Scheme assumes you�re doing that for a

good reason� If you then take another argument to the same macro and use it in the scope of that

new variable� Scheme assumes you want occurrences of the name to refer to the new variable�

That is� Scheme uses an algorithm that checks what you do with names in forms that get passed

as arguments into a macro� If you just use them in the normal ways� evaluating or assigning to

them as variable names� Scheme assumes you mean to refer to whatever those names refer to at

the call site of the macro� �That�s normal lexical scope� But if you take the name and use it as

Chapter �� Quasiquotation and Macros ���

the name of a new variable� Scheme assumes you�re de
ning a binding construct� and that any

other arguments you put in that scope should see the new binding� instead of being scoped at the

call site�

Scheme can generally assume this� because if you�re not implementing a scoping binding form

�like let or do� there�s no reason for a macro to accept a name as an argument and then turn

around and bind it�

����� let�

Once we have let� we can implement let� in terms of that� We simply write a recursive macro

that peels o� one binding form at a time and generates a let� so that we get a nested set of lets

that each bind one variable�

	define�syntax let� 	�

	syntax�rules

		� 	� body�expr ����

	begin body�expr �����

		� 		var� value�expr��	var value�expr� ����

	let 		var� value�expr��

	� 		var value�expr� ����

body�expr ��������

This macro uses two syntax rules� The
rst is the termination case for recursive macroexpansion�

A let� that has an empty binding form �i�e�� binds zero variables should be translated into a begin�

it will just sequence the body expressions�

The recursive rule says that a let� with one or more binding subforms should translate into a

let that performs the
rst binding and another let� to bind the rest and evaluate the body� �Note

that I�ve used the � shorthand for let� in the recursive call� as well as in the pattern�

As with let� Scheme recognizes this as a binding construct� and does the right thing	it notices

that the var argument passed into the macro is used as a name of a new binding in the macro� so

it assumes that the new binding should be visible to the body expressions�

����� cond

Chapter �� Quasiquotation and Macros ���

����	 Discussion

Scheme macros also have several features I haven�t demonstrated� to make it easier to write

more sophisticated macros than or� and I�ll demonstrate those later� too�

In the next section� though� I will discuss a di�erent and simpler kind of macro system� which

is not standard Scheme� and does have problems with variable names�

��� Lisp�style Macros

In this section� I�ll discuss a simple kind of macro system that isn�t standard in Scheme �and

you might be able to skim this section without too much loss but is interesting for several reasons�

� It is very easy to explain how it works	it is a real macro system� but one which is very easy

to implement� We can add it to our interpreter with a few function de
nitions� This should

clear up any confusion about what macros basically are� and how to think about them� �It�s

also another nice example of Scheme programming	we�ll get to cheat and use quasiquote to

do most of our work for us� Then I�ll show how to implement quasiquote� too�

� The simple Lisp�style macro system also demonstrates two important issues in macros� the

power of procedural transformation� and problems with scoping when code is transformed� An

understanding of Lisp macros can only help later when we return to Scheme macros for an

in�depth discussion of how to work and how to use them�

� The new standard Scheme macro system is safer than Lisp macros� and very useful� but not

quite as powerful� Sometimes it�s they�re still useful� if you use them for simple things they�re

appropriate for� Some of our later examples will use this kind of macro�

�

� R�RS will have macros� but IEEE�ANSI Scheme does not� and may not for some time� Most

Schemes do support Lisp�style macros� even though they�re not part of the standard��� and

you can use them to bootstrap a portable implementation of R�RS macros�

�Guile uses Lisp�style macros fairly heavily� so Guile programmers should de
nitely pay atten�

tion�� �

� � You might need to program in Lisp some day� or talk intelligently about Lisp� �

� � People keep reinventing them� and not noticing that they were invented decades ago� for

Lisp	I�ve seen at least three languages with reinventions of Lisp macros� usually in an inferior

form� I want to make it clear what Lisp macros do� and what�s good and bad about them� to

avoid further awkward reinventions of the wheel� �

Chapter �� Quasiquotation and Macros ���

��	�� Ultra�simple Lispish Macros

The classic macro system is the Lisp macro system� which allows the user to de
ne an arbitrary

Lisp procedure to rewrite a new construct� �Most dialects of Lisp� e�g�� Common Lisp� have a macro

facility of the same general kind� called defmacro� We�ll talk for a moment about a simpli
ed

version of Lisp�style macros� Later we�ll explain why and how Scheme macros are better� at least

for most purposes�

Suppose we have a macro system that we can use to tell the interpreter or compiler that when it

sees an expression that�s a list starting with a particular symbol� it should call a particular routine

to rewrite that expression� and use the rewritten version in its place�

For the or example� we want to tell the compiler that if it sees an expression of the form 	or a

b� it should rewrite that into an expression of the form

	let 		temp a�

	if temp

temp

b��

So now we want to tell the compiler how to rewrite expressions like that� Since Lisp expressions

are represented as lists� we can use normal list operations to examine the expression and generate

the new expression� Let�s assume our system has a special form called define�rewriter that lets

us specify a procedure of one argument to write a particular kind of expression�

Here�s a rather ugly rewriter macro for or�

� OR with subtle scope bug

	define�rewriter #or � tell compiler how to rewrite 	or ����

	lambda 	expr�

	let 		a 	cadr expr��

	b 	caddr expr���

	cons #let � make LET form

	cons 	list 	list #temp a��� � make let binding form

	append #	if temp temp� � make IF form

	list b��

Chapter �� Quasiquotation and Macros ���

There�s actually a scoping problem with this macro� which I�ll ignore for now	it�s the problem

that de
ne�syntax
xes� Later� I�ll show what�s wrong and
x it� but for a while I just want to talk

about basic syntax of Lisp�style macros�

Now when the interpreter or compiler is about to evaluate an expression represented as a list�

it will check to see if it starts with or� If so� it will pass the expression to the above rewriter

procedure� and interpret or compile the resulting list instead�

�Actually� macroexpansion doesn�t have to happen just before interpreting or compiling a par�

ticular expression� The system might rewrite all of the macro calls in a whole procedure� or a whole

program� before feeding the procedure or program to the normal part of the compiler� It�s easier

to understand macros if they�re interleaved with expression evaluation or compilation� though	it�s

just an extra case in the main dispatch of your interpreter or compiler�

Implementing define�rewriter is easy� �We�ll show an implementation for our example inter�

preter in a later section� We only need to do two simple things�

� Provide a procedure that can add rewriter procedures to a table� keyed by the name of the

forms they rewrite�

� Modify the interpreter �or compiler to check whether expressions of the form 	symbol ����

begin with the name of a rewriter macro� and if so� to call the rewriter to transform the

expression before interpreting �or compiling it�

That�s all�

The above system works� but it has several awkwardnesses� One is that it is tedious to write

routines that construct s�expressions directly� We can use quasiquote to make this easier� It will

allow us to simply write the s�expression we want the macro to produce� and use unquote to
ll in

the parts we get from the arguments to the macro�

� OR with subtle scope bug

	define�rewriter #or � tell compiler how to rewrite 	or ����

	lambda 	expr�

	let 		a 	cadr expr��

	b 	caddr expr���

+	let 		temp
a�� � return an s�expression of this form

	if temp

temp

b��

Chapter �� Quasiquotation and Macros ���

This is much easier to read� The backquoted expression is now readable as code	it tells us the

general structure of the code produced by the macro� and the commas indicate the parts that vary

depending on the arguments passed to the macro�

Note that there is no magic here� define�rewriter and quasiquotation can be used indepen�

dently� and are very di�erent things� It just happens that quasiquotation is often very useful for

the things you want to do in macros	returning an s�expression of a particular form�

This simple rewriting system is still rather tedious to use� for several of reasons� First� we always

have to quote the name of the special form we�re de
ning� Second� it�s tedious to write a lambda

every time� Third� it�s tedious to always have to destructure the expression we�re rewriting to get

the parts we want to put into the expression we generate� ��Destructure� means take apart to get

at the components	in this case� subexpressions�

��	���� Better Lisp�style Macros

It would be nice if the macro facility allowed you to declare the argument pattern to the macro�

and automatically destructured it for you� Most Lisp systems have a special form called defmacro

that does this for you� and avoids the need to write a lambda expression every time� For consistency

with Scheme naming conventions� we�ll call our equivalent define�macro�

define�macro implicitly creates a transformation procedure whose body is the body of the

de
ne�macro form� It also implicitly destructures the expression to be transformed� and passes the

subexpressions to the transformation procedure�

Using define�macro� we can write or this way� specifying that or takes two arguments�

� OR with subtle scope bug

	define�macro 	or a b�

+	let 		temp
a��

	if temp

temp

b��

We didn�t have to write the code that destructures the form into a and b	define�macro

did that for us� We also didn�t have to explicitly write a lambda to generate the transformation

procedure� define�macro did that too�

Chapter �� Quasiquotation and Macros ���

This makes the syntax of define�macro similar to a procedure�de
ning define form� Still� you

should always remember that you�re not writing a normal procedure� you�re writing a procedure

to transform code before it is interpreted or compiled� The combination of automatic argument

destructuring and template�
lling �using backwuote and comma makes it easier to do this in many

cases�

Like a procedure� a macro can take a variable number of arguments� with the non�required ones

automatically packaged up into a rest list� We can de
ne a variable�arity or with define�macro�

� need to check this example	it�s o� the top of my head �

� variable arity OR with subtle scope bug

	define�macro 	or � args�

	if 	null� args� � zero arg or�

�f

	if 	null� 	cdr� arg�exprs�� � one arg or�

	car arg�exprs�

+	let 		temp
	car arg�exprs���

	if temp

temp

	or
�	cdr arg�exprs�������

Here we�re just accepting the list of argument expressions to the or expression as the rest list

args�

If it�s an empty list� we return �f� Keep in mind that we�re returning the �f object� which will be

used in place of the or expression� i�e� as the literal �f to use in the resulting code� �Conceptually�

it�s a fragment of a program code� even though that program fragment will in fact return the value

 f when it executes� because f is self�evaluating� We could have quoted it to make that clearer�

If it�s a one�element list� we just return the code �s�expression for the
rst argument�

If it�s a list of more than one argument expression� we return an s�expression for the let with

a nested if� �Note the use of unquote�splicing �
� to splice the cdr of the expression list into

the or form as its whole list of arguments�

You should be aware� though� that what you�re really doing is specifying a procedure for trans�

forming expressions before they�re compiled or interpreted� and that quasiquote is just syntactic

sugar for procedural code that constructs an s�expression�

Chapter �� Quasiquotation and Macros ���

define�macro is easy to write� once we�ve got define�rewriter� we don�t have to modify the

interpreter or compiler at all� We just use define�rewriter to write define�macro as a simple

macro� We�ll make define�macro a macro that generates transformation procedures� and uses

define�rewriter to register them with the interpreter�

��	���� Problems With Lisp�Style Macros

Earlier we alluded to a lurking bug in our define�rewriter and define�macro de
nitions for

or�

Suppose we use the or macro this way	we check to see if someone is employed as either a

permanent or temporary employee� and generate a w� tax form if either of those is true�

	let 		temp 	member x temporary�employees��

	perm 	member x permanent�employees���

	if 	or temp perm�

	generate�w� x���

The expansion of this is�

	let 		temp 	member x temporary�employees��

	perm 	member x permanent�employees���

	if 	let 		temp temp��

	if temp

temp

temp��� �BUG 	should refer to outer temp
 not inner�

	generate�w� x���

The problem here is that we happened to use the same name� temp� at both the call site and

inside the macro de
nition� The reference to temp in 	or temp perm� gets �captured� by the

binding of temp introduced in the macro�

This occurs because a normal macro facility does not understand issues of name binding	the

name temp refers to one program variable at the call site� and another at the site of its use inside the

macro	and the macroexpander doesn�t know the di�erence� To the macroexpansion mechanism�

the symbol temp is just a symbol object� not a name of anything in particular� i�e�� a particular

program variable�

Chapter �� Quasiquotation and Macros ���

There are two ways to get around this problem� One is for the macro�writer to be very careful to

use names that are very unlikely to con�ict with other names� This makes code very ugly� because

of the unnatural names given to variables� but more importantly� it�s harder to get right than it

may seem� The other way around the problem is to get a much smarter macro facility� like the new

Scheme define�syntax macro system�

��	���� Ugly Hacks Around Name Con�icts

One way to avoid name con�icts is to pick names for variables used inside macros in such a way

that they�re unlikely to con�ict with names that users of the macros might pick� e�g��

	define�macro 	or first�arg second�arg�

+	let 		tempinormacro
first�arg�

	if tempinormacro

tempinormacro

second�arg���

It�s unlikely that anyone will name a di�erent variable tempinormacro someplace else� so

the problem is solved� right� Not necessarily�

Besides the fact that this is incredibly tacky� there�s still a situation where this kind of solution

is likely to fail	when people nest calls to the same macro� Each nested call will use the same name

for di�erent variables� and things can go nuts� �Food for thought� is this true of the or macro

above� Does it nest properly�

The standard hack around that problem is to have each use of the macro use a di�erent name

for each local variable that might get captured� This requires some extra machinery from the

underlying system	there has to be a procedure that generates new� unique symbols� and which

can be called by the macro code each time the macro is expanded� The traditional Lisp name for

this procedure is gensym� but we�ll call it generate�symbol for clarity�

Now we can write a
xed version of the two�argument OR macro�

Chapter �� Quasiquotation and Macros ���

� Version of ��arg OR with scope bug fixed

	define�macro 	or first�arg second�arg�

	let 		temp�name 	generate�symbol���

+	let 		
temp�name
first�arg�

	if
temp�name

temp�name

second�arg���

Notice that the outer let is outside the backquote	it will be executed when the macro is used

�i�e�� once each time an or expression is rewritten� the quasiquoted part is the code to be interpreted

or compiled �after the comma�d holes are
lled in�

Each time a call to or is processed by the compiler �or interpreter� this let will generate a

new symbol before translating it� quasiquote will
ll in the holes for the new symbol� �Be sure to

get your metalevels right here� temp�name is the name of a variable in the macro transformation

procedure� whose binding will hold a pointer to the the actual name symbol that will be used for

the variable�

Isn�t this ugly� To some degree� Lisp macros are nice because you can use the same language

�Lisp in macros as you can in normal code� But due to these funky scoping issues� you e�ectively

end up having to learn a new language	one with lots of generate�symbol calls and commas�

On the other hand� maybe it builds character and abstract reasoning abilities� because you have

to think a lot about names of names and things like that� Fun� maybe� but not for the faint of

heart�

��� Implementing Simple Macros and Quasiquote

����� Implementing Simple Macros

����� Implementing quasiquote and unquote

� This section is particularly rough and needs to be reworked� Sorry� �

Chapter �� Quasiquotation and Macros ���

quasiquote is a special form that �like quote has a very special sugared syntax� Part of this

syntax is recognized by the reader� rather than the compiler or interpreter proper� the rest of the

work is done by the compiler or interpreter�

������� Translating backquotes to quasiquote

A backquote character is interpreted very specially by the Scheme �or Lisp reader� and back�

quoted expressions are converted into quasiquote expressions with a normal�looking nested�pre
x�

expression syntax� The expression +	a b c� is actually just shorthand for 	quasiquote 	a b c��

Similarly� comma�d expressions are converted� e�g� "�a �b �c is read in as 	quasiquote 	a 	unquote

b� 	unquote c���� Notice that as far as the reader is concerned� these are just lists	it is up to

the compiler or interpreter to process them further� and the reader just preprocesses them into lists

that the compiler or interpreter can deal with�

������� quasiquote

The quasiquote special form may be built into the compiler or interpreter� but it can be

implemented as a macro� in Scheme� That�s the easy way to do it� and it�s what we�ll do�

I�ll show a simpli
ed version of quasiquote that only deals with commas at the top level of a

list� e�g��

	quasiquote 	foo
bar 	baz x y���

but not

	quasiquote 	foo
bar 	baz
x y���

Notice that 	quasiquote 	foo
bar 	baz x y��� should expand to something like

	list #foo bar #	baz x y��

We�ll actually generate an expression that uses cons instead of list� because we want to write

quasiquote recursively� if its argument is a list� it will peel one element at a time of o� the list of

arguments� and either quote it or not before using it in the resulting expression that is the rewritten

version of the macro call�

Chapter �� Quasiquotation and Macros ���

Given this strategy� 	quasiquote 	foo
bar 	baz x y��� should expand to

	cons #foo

	cons bar

	cons #	baz x y��

#	���

Notice that what we�ve done is generate an expression to generate a list whose components

are explicitly quoted where necessary� as opposed to the original backquoted list where things are

quoted by default and explicitly unquoted�

And since #thing is just a shorthand for 	quote thing�� we�ll really generate an ugly expression

like

	cons 	quote foo�

	cons bar

	cons 	quote baz x y�

#	����

written as a straighforward low�level macro� We�ll de
ne it as a trivial macro that just calls a

procedure quasiquote� to do the actual transformation�

� NEED TO DEBUG THIS��� PRW �

	define�macro 	quasiquote expr�

	quasiquote� expr��

Chapter �� Quasiquotation and Macros ���

	define 	quasiquote� expr�

	if 	not 	pair� expr�� � if quoted expr is not a list
 it#s just

expr � a literal

� else we#ll grab a subexpression and cons it 	appropriately

� quoted or not� onto the result of recursively quasiquoting

� the remaining arguments

	let 		first�subexpr 	car expr��

	rest�subexprs 	cdr expr���

	if 	and 	pair� next�subexpr�

	eq� 	car first�subexpr� #unquote���

	list #cons

first�subexpr � gen expr to eval this subexpr

	quasiquote� rest�subexprs��

	list #cons

	list #quote first�subexpr� � quote this subexpr

	quasiquote� rest�subexprs�����

A full implementation of quasiquote is a little trickier� because it must deal with nested uses of

quasiquote and unquote� each subexpression that is not unquoted must be traversed and treated

similarly to the top�level list	i�e�� rather than just using the subexpressions as literals and quoting

them� an equivalent expression should be constructed to create a similarly�structured list with the

unquoted holes
lled in� Also� a full implementation should handle unquote�splicing as well as

unquote�

������� define�rewriter

In Chapter � whatever �� I showed the code for an interpretive evaluator that was designed to

support macros� In this section� I�ll explain how to implement the macro processor and install it

in the interpreter�

Recall that when eval encounters an expression that�s represented as a list� it must determine

whether the list represents a combination �procedure call� a built�in special form� or a macro call�

It calls eval�list to do this dispatching�

Also recall that we implemented environments that can hold di�erent kinds of bindings	of

normal variables or macros� A macro binding holds a transformation procedure that can be used

to rewrite an expression before it is interpreted�

Chapter �� Quasiquotation and Macros ���

eval�list checks to see if the list begins with a symbol� which might be the name of a macro�

or the name of a procedure� It looks in the environment to
nd the current binding of the symbol�

If it�s a syntax �macro binding� eval�list it extracts the transfromer procedure from the

binding information� and calls eval�macro�call to evaluate the list expression�

Here�s eval�macro�call�

	define 	eval�macro�call transformer expr envt�

	eval 	transformer expr� envt��

All it does is apply the transformation procedure to the expression� and call eval recursively to

evaluate the result�

This is su�cient to be able to use macros� once they�re de
ned� We also need to be able to

de
ne macros� so that we can use them�

For that� we�ll add one special form to our interpreter� define�rewriter� which takes a name

symbol and a transformation procedure as its arguments�

� Show define�rewriter ��� has to accept a closure in our language� not the underlying Scheme

�

������	 define�macro

Once we�ve added de
ne�rewriter to our interpreter� we don�t have to modify the interpreter

at all to add define�macro� We can simply de
ne it as a macro in the languauge we interpret�

using define�rewriter �from the inside�� We had to add define�rewriter to the language

implementation itself� but once that�s done� we can bootstrap a better macro system with no extra

help from the interpreter�

define�macro does three things�

It analyzes the calling form of a macro �the argument pattern and generates code to destruc�

ture expressions of that form�

it creates a procedure that will do the destructuring and the transformation expressed in the

macro body�

Chapter �� Quasiquotation and Macros ���

it installs a new syntax binding in the current binding environment� holding that transformation

procedure�

Bear in mind that the following code is not code in the interpreter� but code to be interpreted�

to create a define�macro macro� from inside our language�

� show define�macro ��� pattern matching on arg form and creating a routine to destructure

and bind��� �

��	 Procedural Macros vs� Template��lling Macros

��� Programming Examples Using Macros

Chapter �� Records and Object Orientation ���

 Records andObject Orientation

�� Records

����� Data Abstraction

����� Implementing Records

�� Objects

����� Object Orientation

����� Implementing a Simple Object System

������� Generic Functions and Dynamic Dispatch

������� Inheritance

Chapter �� Other Useful Features ���

� OtherUseful Features

��� Special Forms

��� Input�Output Facilities

����� read and write

����� display

����� Ports

����	 with�input��dots Forms

��� Useful Types and Associated Procedures

����� Numeric Types

������� Floating�Point Numbers

������� Arbitrary�Precision Integers

������� Ratios

Chapter �� Other Useful Features ���

������	 Coercions and Exactness

����� Vectors

����� Strings and Characters

Chapter ��� call�with�current�continuation ���

�� call�with�current�continuation

call�with�current�continuation is a very powerful control construct� which can be used to

create more conventional control constructs� like catch and throw in Lisp �or setjmp and longjmp

in C� or coroutines� and many more� It is extremely powerful because it allows a program to

manipulate its own control �stack� so that procedure calls and returns needn�t follow the normal

depth�
rst textual call ordering�

Recall that we said � WHERE� � that Scheme�s equivalent of an activation stack is really a chain

of partial continuations �suspension records� and this chain is known as a full continuation� And

since continuations are immutable� they usually form a tree re�ecting the call graph �actually� only

the non�tail calls� Normally� the parts of this tree that are not in the current continuation chain

are garbage� and can be garbage collected�

If you take a pointer to the current continuation� and put it in a live variable or data structure�

however� then that continuation chain will remain live and not be garbage collected� That is� you

can �capture� the current state of the stack�

If you keep a captured state of the stack around� and later install the pointer to it in the system�s

continuation register� then you can return through that continuation chain� just as though it were

a normal continuation� That is� rather than returning to your caller in the normal way� you can

take some old saved continuation and return into that instead�

You might wonder why anybody would want to do such a weird thing to their �stack�� but there

are some useful applications� One is coroutines� It is often convenient to structure a computation

as an alternation between two di�erent processes� perhaps one that produces items and another

that consumes them� It may not be convenient to either of those processes into a subroutine that

can be called once to get an item� because each process may have complex state encoded into its

control structure�

�You probably wouldn�t want to have to structure your program as a bunch of incremental

operations that were called by successive calls to a do�next�increment routine� It may be that the

program it gets its data from can�t easily be structured that way� either� Each program should

probably be written with its own natural control structure� each suspending its operation when it

needs the other to do its thing�

Coroutines allow you to structure cooperating subprograms this way� without making one sub�

servient to �and callable piecemeal from another�

Chapter ��� call�with�current�continuation ���

Coroutines can be implmemented as operations on continuations� When a coroutine wants to

suspend itself and activate another �co�routine� it simply pushes a partial continuation to save its

state� then captures the value of the continuation register in some way� so that it can be restored

later� To resume a suspended routine� the continuation chain is restored and the top partial

continuation is popped into the system state registers� Alternation between coroutines is thus

accomplished by saving and restoring the routines� continuations�

Note that in this case� we can have two �or more trees of continuations that represent the course

of the computation� and that control �ow can alternate back and forth between trees� Usually�

computations are structured so that most of the work is done in the usual depth�
rst procedure

calling and returning� with occasional jumps from one routine�s depth�
rst activity to another�s�

Another use of continuations is to implement catch and throw� which are roughly like setjmp

and longjmp in C� The idea is that you may want to abort a computation without going through the

normal nested procedure returns� In a normal stack�based lagnuage �without continuations� this is

usually accomplished by storing a pointer into the stack before starting the abortable computation�

If it is necessary to abort the computation� all of the activation records above the point of call can

be ignored� and the stack pointer can be restored to that point� just as though all of the invocations

above it had returned normally�

This can be implemented with call�with�current�continuation by saving the continuation

at the point where an abortable computation is begun� Anywhere within that computation� that

continuation may be restored �clobbering the �normal� value of the continuation register� etc� to

resume from that point�

But call�with�current�continuation is more powerful than coroutines or catch and throw�

Not only can we escape �downward� from a computation �by popping multiple partial continuatons

at once without actually returning through them� we can also escape �upwards� back into a

computation that we bailed out of before� This can be useful in implementing exception handling�

where we may want to transfer control to a special coroutine that may �
x up� an error that was

detected� but then resume the procedure that encountered the error� after the problem is
xed�

call�with�current�continuation can also be used to implement backtracking� where the

control �ow backs up and re�executes from some saved continuation� In this case� we may save the

continuation for some computation� but go ahead and return through it normally� Later� we may

restore the saved continuation and return through it again�

Note that in general� continuations in Scheme can be used multiple times� The essential idea

is that rather than using a stack� which dictates a depth�
rst call graph� Scheme allows you to

Chapter ��� call�with�current�continuation ���

view the call graph AS A GRAPH� which may contain cycles� even directed cycles �which represent

bactracking�

The syntax of call�with�current�continuation is fairly ugly� but for some good reasons� in

its raw form� it is very powerful� but correspondingly hard to use� Typically� it is encapsulated in

macros or other procedures to implement other� higher�level control constructs�

call�with�current�continuation is itself a normal
rst�class procedure� which encapsulates

the very low�level continuation munging abilities in something like a civilized package� Since it�s

a
rst�class procedure� you can write higher�order procedures that treat it like data� or call it� or

both�

call�with�current�continuation is a procedure of exactly one argument� which is another

procedure to execute after the current continuation has been captured� The current continuation

will be passed to that procedure� which can use it �or not as it pleases�

The captured continuation is itself packaged up as a procedure� also of one argument� That�s

so that you can�t muck around with the continuation itself in any data�structure�like way� There

are only two things you can do with captured continuations	capture them and resume them�

Continuations are captured by executing call�with�current�continuation� which creates an

escape procedure� They are resumed by calling the escape procedure� When called� the escape

procedure abandons whatever computation is going on� restores the saved continuation� and resumes

executing the saved computation at the point where call�with�current�continuation occurred�

Note that call�with�current�continuation is a procedure of one argument� We�ll call that

procedure the abortable procedure� The abortable procedure must also be a procedure of exactly

one argument� �If you want to call a procedure that takes a bunch of arguments� and still make it

abortable using call�with�current�continuation� you have to use a trick I�ll describe below�

The abortable procedure�s argument is the escape procedure that encapsulates the captured

continuation�

call�with�current�continuation does the following�

Creates an escape procedure that captures the current continuation� If called� this procedure

will restore the continuation at the point of call to call�with�current�continuation�

Calls the procedure passed as its �call�with�current�continuation�s argument� handing it the

escape procedure as its argument�

Chapter ��� call�with�current�continuation ���

If and when the escape procedure is called� it restores the continuation captured at the point

of call to call�with�current�continuation� We refer to this as a nonlocal return	from the

point of view of the caller of call�with�current�continuation� it looks as though call�with�

current�continuation had returned normally�

The �abortable procedure we want to call must take one argument� which is the escape proce�

dure that can resume the computation just beyond the call to call�with�current�continuation�

As if this weren�t cryptic enough� the escape procedure is also a procedure of exactly one

argument� When the escape procedure is used to perform a nonlocal return� it returns a value as

the result of the call to call�with�current�continuation�

The argument to the escape procedure is the value that will be returned as the value of the call�

Note that if the escape procedure is not called� and the abortable procedure returns normally� the

value it returns is returned as the value of the call to call�with�current�continuation�

A call to call�with�current�continuation therefore can return in two ways� Either the

abortable procedure returns normally� and call�with�current�continuation simply returns that

value� or the escape procedure can be called� and its argument is returned as the value of the call

to call�with�current�continuation�

Consider the following example� where I�ve given line numbers to refer to later�

�� 	define some�flag �f�

�� 	define 	my�abortable�proc escape�proc�

�� 	display �in my�abortable�proc��

�� 	if some�flag

�� 	escape�proc �ABORTED���

�� 	display �still in my�abortable�proc��

�� �NOT ABORTED��

 � 	define 	my�resumable�proc�

&� 	do�something�

%� 	display 	call�with�current�continuation my�abortable�proc��

��� 	do�some�more��

��� 	my�resumable�procedure�

Chapter ��� call�with�current�continuation ���

At line ��� we call my�resumable�procedure� It calls do�something� and then calls display�

But before it calls display it has to evaluate its argument� which is the call to call�with�current�

continuation�

call�with�current�continuation saves the continuation at that point� and packages it up as

an escape procedure� �Line � The escape procedure� if called� will return its argument as the value

of the call�with�current�continuation form�

That is� if the escape procedure is called� it will resume execution of the display procedure�

which prints that value� and then execution will continue� calling do�some�more�

Once call�with�current�continuation has created the escape procedure� it calls its argu�

ment� my�abortable�proc� with the escape procedure as its argument�

my�abortable�proc then displays �prints �in my�abortable�proc�� Then it checks some�

flag� which is false� and does not execute the consequent of the if	that is� it doesn�t execute

the escape procedure� It continues executing� displaying �still inmy�abortable�proc�� It then

evaluates its last body form� the string �NOT ABORTED�� which evaluates to itself� and returns that

as the normal return value of the procedure call�

At this point� the value returned from my�abortable�proc is printed by the call to display in

line ��

But suppose we set some�flag to �t� instead of �f�

Then when control reaches line �� the if does evaluate its consequent� This calls the escape

procedure� handing it the string �ABORTED� as its argument� The escape procedure resumes the cap�

tured continuation� returning control to the caller of call�with�current�continuation� without

executing lines � and ��

The escape procedure returns its argument� the string �ABORTED� as the value of the call�with�

current�continuation form� It restores the execution of my�resumable�proc at line �� handing

display the string �ABORTED� �as the value of its argument form� At this point �ABORTED� is

displayed� and execution continues at line ���

Often we want to use call�with�current�continuation to call some procedure that takes arguments

other than an escape procedure� For example� we might have a procedure that takes two arguments

besides the escape procedure� thus�

Chapter ��� call�with�current�continuation ���

	define 	foo x y escape�

���

	if 	� x ��

	escape #ERROR��

�����

We can
x this by currying the procedure� making it a procedure of one argument�

� An earlier chapter should have a discussion of currying� �

Suppose we want to pass � and � as the values of x and y� as well as handing foo the escape

procedure� Rather than saying

	call�with�current�continuation foo�

which doesn�t pass enough arguments to the call to foo� we say

	call�with�current�continuation 	lambda 	escape� 	foo � � escape���

The lambda expression creates a closure that does exactly what we want� It will call foo with

arguments �� �� and the escape procedure created by call�with�current�continuation�

���� Implementing a Better Read�Eval�Print Loop

���� Implementing Catch and Throw

���� Implementing Backtracking

���� Implementing Coroutines

���� Implementing Cooperative Multitasking

Chapter ��� call�with�current�continuation ���

���	 Caveats about call�with�current�continuation

Chapter ��� A Simple Scheme Compiler ���

�� A Simple SchemeCompiler

� The example compiler in compiler�scm is the skeleton of a simple compiler for a subset of

Scheme� whose structure corresponds fairly closely to the example interpreter in eval�scm� �

� this is out of place� or needs more introductory intro
rst� �

Where the interpreter has a basic dispatch routine called eval� which can evaluate any kind

of expression� the compiler has a basic dispatch routine called compile� which can compile any

kind of expression� Like eval� compile examines the expression to be compiled� and dispatches to

an appropriate routine for that kind of expression� The routine that compiles an expression may

recursively call compile to compile subexpressions� just as the interpretive evaluator may call eval

recursively to evaluate subexpressions�

���� What is a Compiler�

� This is somewhat redundant with earlier stu�� but more concrete� Should I cut it down��

Before answering what a compiler is� let�s backtrack and talk about interpreters�

������ What is an Interpreter�

An interpreter really does two things�

�� it examines expressions and dispatches to the appropriate code for that kind of expression

�� it performs the actual operations speci
ed by the program

Typically� most of the work done by an interpreter is in the
rst category	our example inter�

preter� for example� spends a lot of time examining expressions to see if they�re self�evaluating or

symbols or lists� and dispatching to the appropriate procedure to evaluate that kind of expression�

This dispatching is interleaved with the actual work that evaluates the expressions�

One of the problems with an interpreter is that every time an expression is encountered� it is

analyzed again� Consider an expression like 	� foo bar� embedded in a loop that iterates many

times� Our interpreter will encounter this expression at each iteration of the loop� and at each

Chapter ��� A Simple Scheme Compiler ���

iteration of the loop it will do mostly the same things� it will examine the expression and
nd out

it�s a list� then call eval�list� which will further examine it to
nd out it�s a combination �not

a special form or macro� and call eval�combo� Then eval�combo will call eval recursively to

evaluate the subexpressions� and each call to eval will examine the subexpressions and dispatch to

the appropriate specialized evaluation routine� Only then do we start actually computing the value

of the expression� by computing the values of the subexpressions �� foo� and bar� i�e�� looking up

the values of those variables�

������ OK� so what�s a compiler�

We would rather factor out most of this redundant work� and examine the expression just once

to see what to do� Then each time we �evaluate� the expressions� we can just do those things� For

the expression 	� foo bar�� the set of actions an interpreter will execute �leaving out all of the

analysis and dispatching is�

look up variable bar

look up variable foo

look up variable �

apply

�Here we�ve assumed that we evaluate subexpressions of a combination from right�to�left� rather

than the more intuitive left�to�right order� that�s a legal way to do it in Scheme an it turns out to

be handy in a very simple compiler� as we�ll explain in a minute�

� maybe I should change this to do args left�to�right� but the operator last� like RScheme� �

For code like this� which doesn�t have any conditionals in it� we can convert an interpreter into

a compiler very easily� We just modify the interpreter so that instead of actually evaluating the

expressions� it just records what operations it would execute if it were interpreting the expression�

I�m intentionally being vague as to how exactly these simple operations �like look�up�variable

work� but you should be able to see that each of them should be translatable into a handful of

machine instructions� That�s how most compilers work� they
rst translate a program into an

intermediate code representation� like our look�up�variable operations� and then translate that rep�

resentation into machine instructions� �In between there may be one or more steps that �optimize�

the intermediate code� and each step may represent the code in a di�erent way�

So this simple compiler just �pretends� to evaluate the expression� but whenever it gets to an

actual action �like looking up a variable� or calling a procedure� it simply records what action it

Chapter ��� A Simple Scheme Compiler ���

would take if it were just an interpreter� The result is a list of actions which� if taken� will have the

same e�ect as interpreting the expression�

Here�s another example�

	let 		x ���

	y ����

	� x 	� x y���

Supposing that our intermediate code representation is a sequence of lists that represent oper�

ations and their operands� the code that our simple compiler will generate is�

	fetch�literal ���

	fetch�literal ���

	bind x y�

	look�up�variable y�

	look�up�variable x�

	look�up�variable ��

	call�procedure�

	look�up�variable x�

	call�procedure�

	unbind�

Later on� we�ll talk in more concrete detail about where values are temporarily stored when

they�re looked up� and various tweaks to make it possible to translate intermediate code into

smaller and faster sequences of machine instructions� For now just notice that we can string

together sequences of these intermediate code operations� and if we just translate each of them

into some machine instructions� we can string those sequences of machine instructions together and

get a larger sequence that we can execute to evaluate the whole expression� We can execute it as

many times as we want� and all of the expression analysis and dispatching will already have been

done	the only work done each time it�s executed is the work that actually binds variables� looks

up values� calls procedures� and so on�

It�s not much harder to compile conditional expressions like if� When we compile an if� we

need to generate code for the condition expression� the consequent expression� and the alternative

expression� �The �consequent� is the code executed if the condition is true� and the �alternative�

is the code executed if it�s false� Then we need to string the code for those expressions together

appropriately with some conditional branches�

Chapter ��� A Simple Scheme Compiler ���

�code for condition�

	branch�if�false �else�action�label��

�code for consequent�

	branch�unconditionally �end�label��

�else�action�label�

�code for alternative�

�end�label�

The labels here will actually be translated into the addresses of the code they label� and the

branches will be
lled in with those addresses� �We have to be careful to use a unique pair of new

labels for each if we compile� so or some other trick like that� so that we can nest if expressions

and keep their labels straight�

�One way of generating machine code from this representation is to translate each of the state�

ments into a short sequence of assembly instructions and each label into an assembly label� stringing

them together as shown� Then the assembly code can be assembled into machine code�

Note that for an if� the control structure of the compiler is actually simpler than the control

structure of an interpreter� The interpreter will evaluate the condition expression� and then decide

at run time whether to evaluate the consequent ��then� expression or the alternative ��else� ex�

pression� The compiler will always compile all three subexpressions� and string them together with

conditional branches that will do the deciding at run time� based on the runtime value computed

by the code for the condition expression�

Here�s a slightly more complicated example�

	let 		x ����

	if x

	let 		y 	� � x���

	� x y��

�t��

translates to intermediate code roughly like�

Chapter ��� A Simple Scheme Compiler ���

	fetch�literal ���

	bind x�

	lookup�variable x�

	branch�if�false �else����

	lookup�variable x�

	fetch�literal ��

	lookup�variable ��

	call�procedure�

	bind y� � create and enter envt that binds y

	lookup�variable y�

	lookup�variable x�

	lookup�variable ��

	call�procedure�

	unbind� � exit envt that binds y

	branch �end����

�else���

	fetch�literal �t�

�end���

There are actually a couple of minor things wrong with the code we�ve generated� but this is

pretty close to a workable intermediate representation�

���� What Does a Compiler Generate�

� Talk about machine code� interpretive virtual machines� etc� �

���� Basic Structure of the Compiler

The main function of the compiler is compile� which generates intermediate code for an expres�

sion� and which may call itself recursively to generate code for subexpressions�

Calls to compile hand it an expression and some bookkeeping information we�ll discuss later�

Compile returns intermediate code� plus updated versions of some of the bookkeeping information�

To start this process o�� top�level forms �like the ones you type into the read�compile�run�

print loop� or de
nitions of top�level procedures are massaged a little� then intermediate code for

Chapter ��� A Simple Scheme Compiler ���

them is generated� Then the intermediate code is converted into real executable code and packaged

up as a closure that can be called�

We will discuss these issues of massaging top�level forms and generating executable closures

later� for now� the main thing to understand is the recursive generation of intermediate code for

nested expressions�

Here�s the main dispatch routine of the compiler� which is analagous to the interpreter�s eval�

	define 	compile expr c�t�envt literal�state c�t�cont�

	cond 		symbol� expr�

	compile�symbol expr c�t�envt literal�state c�t�cont��

		pair� expr�

	compile�list expr c�t�envt literal�state c�t�cont��

		self�evaluating� expr�

	compile�self�eval expr c�t�envt literal�state c�t�cont��

	�t

	syntax�error �Illegal expression form� expr����

For now� ignore most of the arguments to compile� we�ll explain them later� The main thing to

notice is that it looks a lot like eval�

� blah blah blah����

� Somewhere� it�s important to bring out the di�erence between the mutual recursion of eval and

apply in the interpreter and the way the compiler works� Eval recurs locally� but just generates

code for apply��� The control structure of the compiler is actually simpler than for the interpreter�

because the hairy stu� just happens at run time��� �

���� Data Representations� Calling Convention� etc�

Before trying to understand the compiler itself in more detail� it is probably best to have a

concrete idea of what the representations of data are� how procedure calls work� and how registers

are used� That is� you have to understand the �abstract machine� that the compiler compiles for�

An abstract machine is an abstraction of low�level operations and objects� The compiler
rst

compiles code from the source language into this lower�level representation� and then translates the

�abstract machine language� into actual executable code� �The executable code may be machine

Chapter ��� A Simple Scheme Compiler ���

code that runs directly on the hardware� or an interpretive executable code such as bytecodes�

which are interpreted by a fast interpreter�

You can think of an abstract machine as being more like an assembler than an interpreter� but

maybe a little smarter than most assemblers�

I will describe one particular set of features to make things concrete� this is not quite how

RScheme works� or Scheme���� or any particular other system that I know of� but there�s nothing

unusual about it except maybe its simplicity�

In �eshing out our example compiler� let�s suppose our system works this way�

�� We have several important registers used in stereotyped ways� e�g�� to hold a pointer to the

current binding environment�

�� We have an evaluation stack that�s used to store intermediate values while evaluating nested

expressions�

�� We use a continuation chain to represent the saved state of callers� their callers� and so on� so

that they can be resumed after a procedure returns�

The registers of the abstract machine may represent hardware registers� or just storage locations

that are used in these stereotyped ways� �For example� if compiling to C� the registers might be C

global variables� and the C compiler might or might not let you specify that the variables should

be put in hardware registers�

���	�� The Registers

We�ll assume that there are several important registers that can be used by the code our compiler

generates�

�� The VALUE register� where an expression leaves a value so that it can be used by an enclosing

expression� In The case of a procedure� this is where the value is left for the caller when the

procedure returns� The value register is also used when calling a procedure�

�� The ENVT register� which holds a pointer to the environment that code is currently executing

in�

�� The CONT register� which holds a pointer to the chain of saved continuations of callers�

�� The TEMPLATE register� which holds a pointer to a special data structure associated with the

procedure that is currently executing� and

Chapter ��� A Simple Scheme Compiler ���

�� The PC �program counter register� which says which instruction we are currently executing�

�If we�re compiling to normal machine code� this is a special register built into the CPU for

this purpose� and we use it pretty much like any other code would� If we�re compiling to an

interpretive executable code� this is probably variable in the interpreter�

���	�� The Evaluation Stack �or Eval Stack� for short

The eval stack is used for holding values that have been computed by evaluating subexpressions�

but not yet used or bound�

In evaluating the expression 	� foo ���� the three values will be computed� When each value

is computed� it will be left in the VALUE register� We evaluate right to left� and after evaluating

each argument� we perform a PUSH operation on the eval stack� which copies the value in the value

register onto the eval stack� When we get to the
rst subexpression �the one that�s supposed to

return a function to call� we leave the value in the value register� because that�s where we put the

closure pointer for a procedure call�

The eval stack is used for two main purposes�

�� storing intermediate values for nested expressions� and

�� passing arguments to procedures�

The eval stack is not used to hold intermediate values or local variables for suspended

procedures	it isn�t like the activation stack in a conventional implementation of C or Pascal�

The values in the eval stack at any given time are only the intermediate values stored for the

currently executing procedure� Intermediate values for suspended procedures are saved in the

continuation chain as necessary�

When we call a procedure� the only values on the eval stack are the arguments to the procedure�

Any other values used by the caller are moved from the eval stack into a continuation before calling�

���	�� The Continuation Chain

The continuation chain is a data structure that
lls roughly the role of an activation stack in

the implementation of a conventional programming language� The continuation chain is a linked

list of partial continuations� each of which is a record that stores the saved state of a procedure�

Chapter ��� A Simple Scheme Compiler ���

When a procedure performs a non�tail procedure call� it packages its important state information

up into a partial continuation� this record saves the values of the environment� template� PC� and

continuation registers� and any temporary values on the eval stack�

Once a caller has saved its state in a partial continuation� then the callee can do whatever it

wants with the important registers and the evaluation stack� �This is called a caller�saves register

usage convention� because the caller of a procedure is obliged to save any values that it will need

when it resumes�

Remember that continuations are allocated on the garbage collected heap and are immutable	

we never modify a continuation once it�s created� When we resume from a saved partial continu�

ation� we copy the values from the partail continuation into the registers and eval stack� but that

doesn�t modify the partial continuation itself	it�s still sitting out there on the heap� This is im�

portant for being able to implement call�with�current�continuation� it�s what allows us to resume

from the same continuation any number of times�

���	�	 Environments

The compiler assumes that a binding environment is a chain of frames� each of which is a vector

of slots which are the variable bindings� Each frame also has a static link or scope link
eld� which

points to the frame representing the next lexically enclosing environment�

Top�level environments are represented specially� as hash tables that map names to bindings�

We�ll use a hash table instead of the association lists we used in our simple interpreter� because

they�re faster if you have a lot of bindings� A binding object for a top�level environment is pretty

much the same as in the interpreter� a little vector with two important slots� a slot for its name

and another slot that is the actual value
eld�

Local environments are represented very di�erently from toplevel environments� each frame is

a vector of slots� and does not store the names of the bindings� It turns out that the names are

only needed at compile time� so they don�t actually have to be stored in the runtime environment�

�The compiler also turns out to be able to do most of the work for looking up a toplevel variable

at compile time� so the speed of our hash tables is not going to be critical to our runtime speed�

Chapter ��� A Simple Scheme Compiler ���

���	�� Closure Representation and Calling

Closures in our system are represented as objects with two
elds� a pointer to the environment

captured by the closure� and a pointer to an object called a template� which in turn contains a

pointer to the code for the procedure�

When we evaluate the following expression

	let 		foo ���

	bar ����

	lambda 	����

�����

we�ll create an environment frame to hold the bindings of foo and bar� and initialize them to ��

and ��� respectively� This environment frame will have a scope link pointing to the environment

we were executing in when we entered the let� Inside this environment� we�ll create a closure� The

closure will hold a pointer to the new environment� and a pointer to a template object representing

the anonymous procedure being closed� The template will have a pointer to the actual executable

code� All of these things will be heap�allocated objects� and in our implementation we�ll give each

one header
eld showing what kind of object it is�

Chapter ��� A Simple Scheme Compiler ���

�to envt� frame

for enclosing

scope�

!

�

������������ �

� envt� fr�� �

������������������� �

� scope � �����������

������������ � ������������

� closure � � foo � �� �

������������ � ������������

envt � ��������# bar � �� �

������������ ������������

proc � ���������

������������ $ ������������

$ � template � ������������

+���������������� � code �

code � ������������ ������������

������������ �executable�

� � � code for �

������������ �procedure �

� � � �

������������ � ��� �

� ��� � ������������

������������

The template object holds not only the pointer to the actual code� but any other handy values

that the compiler can compute or look up at compile time� and which should be available to the

procedure at run time� We�ll discuss that more later�

When we want to apply a procedure to some argument values� we put the argument values on

the eval stack� and a pointer to the closure we want to call in the VALUE register� Then we execute

a short sequence of instructions that does the call�

Extract the environment pointer from the closure and put it in the environment register� �This

is basically just an indexed load using the value register as a base�

Extract the template pointer from the closure and put it in the template register� �This is

Chapter ��� A Simple Scheme Compiler ���

basically just another indexed load using the value register as a base�

Extract the code pointer from the template and put it in the program counter register� i�e��

jump to that code� �This is basically just another indexed load using the template register as

a base� and a jump to that address�

Thus actual machine code for our �apply� operation in our intermediate representation is just a

handful of instructions that do this stu�	a stereotyped little instruction sequence that destructures

a closure and puts the appropriate values in registers before beginning execution of the procedure�

Because this is the way the procedure calling convention works� we know that when we begin

executing the code for a procedure� the environment register will point to the right environment

�where the procedure was de
ned and the template register will point to the template for that

procedure� Any values stored in the template by the compiler can be fetched at compile time by

doing an indexed load with the template register as a base�

Consider this procedure�

	define 	foo x y�

	list #bar x y��

Here� the literal bar is needed by the procedure	there must be some code in foo that will

somehow fetch a pointer to the symbol bar� That�s what the template object is for� When this

procedure is compiled� the compiler accumulates a list of such literals� and when the template

object for the procedure is created� all of those values will be stored into it� When the compiler

generates code to fetch the symbol bar� it just looks at the symbol�s position in the literal list �and

thus its o�set in the template object� and generates code to do an indexed load to fetch that value

from the template at run time�

���� Continuations

������ Applying a Procedure Doesn�t Save the Caller�s State

Remember that when we do a procedure call� we do not necessarily save the state of the caller�

For a non�tail call� the compiler must generate code to save the caller�s state plus code for the

actual call� For a tail call� there is no need to save the state� Because of this� there isn�t really a

single �procedure call� operation that saves the caller�s state and invokes the callee� There are two

separate operations� save�continuation and apply�

Chapter ��� A Simple Scheme Compiler ���

As mentioned above� the code sequence that performs a procedure applicatin assumes that the

pointer to the closure to be called is in the VALUE register� The procedure will leave its value in

that register when it returns�

������ Continuation Saving

save�continuation is the operation that saves the state of the currently executing procedure

in a partial continuation� and pushes it onto the continuation chain�

When pushing a continuations� it is important to save all of the values on the eval stack� except

for the arguments to the procedure being called� Therefore� when generating code for a combination

�procedure call expression� the code to save the caller�s state does not come just before the actual

code to call the procedure� This would remove the arguments to the procedure from the eval stack�

Instead� the continuation save comes just before the code that generates the argument values that

will be passed to the procedure�

	save�continuation �label�� � save everything else before computing args

�compute argn�

���

�compute arg��

�compute callee�

	apply�

�label�

that way� the arguments to the call �and nothing else will be on the eval stack when the

procedure is called� and when the procedure returns� it will restore the other values from the

partial continuation onto the eval stack�

This separation of the saving and calling code looks especially funny for nested expressions that

call procedures� but it makes perfect sense�

save�continuation takes an argument which is the address of the code to execute when the

continuation is resumed� This address is saved in the partial continuation� and when the continu�

ation is resumed� it will be branched to �put in the PC register�

Chapter ��� A Simple Scheme Compiler ���

������ An Example

Now that we have a more detailed idea how the registers� eval stack� and continuations work�

here�s an example�

	� 	� a b� 	� c d��

compiles to intermediate code something like�

	push�continuation �resume���� � save cont for call to �

	push�continuation �resume���� � save cont for call to �

	lookup�variable d� � get value of d into value reg

	push� � push value of d on eval stack

	lookup�variable c� � get value of c into value reg

	push� � push value of c on eval stack

	lookup�variable �� � look up �

	apply� � call �
 which is in value reg after lookup

	push�

�resume���

	push�continuation �resume���� �save cont for �
 incl� value of 	� c d�

	lookup�variable b� � get value of b

	push�

	lookup�variable a� � get value of a

	push�

	lookup�variable �� � get value of �

	apply� � call �

	push� � push returned value on top of restored e stack

�resume���

	lookup�variable �� � look up �

	apply� � tail call �

�resume���

Things to notice�

�� after the
rst apply� the called routine �or something it directly or indirectly tail calls will

eventually do a procedure return� and pop the latest continuation we pushed� restoring anything

that was on the eval stack at that point� and resuming execution at label�� � OOPS���
x this

�

�� after the second apply� the called routine will eventually �directly or indirectly do a procedure

Chapter ��� A Simple Scheme Compiler ���

return� which will pop the second continuation we pushed� restoring the already�computed

value of the subexpression 	� c d� to the eval stack�

�� we generated code for the expression 	� 	� a b� 	� c d�� to be used in tail position� This

code doesn�t save a continuation before the
nal call to �� If the expression is to be used in

non�tail position� we must generate slightly di�erent code� which will save a continuation that

will resume after this expression�

�����	 Generating Unique Labels

� where does this go� �

Like compile�if� compile�combo generates labels as necessary to be able to name the code

where execution should be resumed after a call	in the code it generates� it puts the label just before

the intermediate code instruction to resume� and the same label in the call to save�continuation

that should resume there�

It is easy to generate unique labels for every resumable point in a program� We just keep a

counter of labels we�ve used so far� and to create a new one we append the digits representing this

number to the string �resume�� so that we get �resume��� �resume��� and so on�

We can write a Scheme procedure� generate�label� which keeps a counter� and when given a

string as an argument� returns the a new string with the same characters plus the digits representing

the number in the counter� That way� we can use labels that start with �else� and �end� to label

the branch targets of an if expression� and labels that start with �resume� to represent the

resumption points for continuation saving� This makes the intermediate code we generate fairly

understandable� while ensuring that labels are still unique� and easy to use as assembler labels

when translating intermediate code to machine language�

���	 More on Representations of Environments

To get reasonable performance for our system� we�ll want to treat the top�level environment

di�erently from local variable binding environments� We�ll use a trick involving lexical scope to

precompute most of the work done in looking up a local variable binding� and a di�erent trick to

make it fast to look up top�level variables�

Chapter ��� A Simple Scheme Compiler ���

As we said before� each local variable binding contour �e�g�� the bindings introduced by a let�

or by binding the args to a procedure is represented at run time as a frame with slots for each

variable� plus a scope link that points to the frame representing the enclosing contour�

A top�level environment is likely to be large� and we will want to be able to access it in special

ways� We will represent it as a hash table that maps symbols �variable names to their toplevel

bindings� The bindings themselves will be represented as objects� whose main function is to have

one
eld that holds the current value of the variable� For simplicity� we�ll make them self�identifying

as well� not only will the names be used as keys in the hash table� but the binding objects will hold

pointers to their names as well as values�

Keep in mind that this representation is just one that�s convenient� A toplevel environment

could be represented as any kind of table �e�g�� an association list� but we want it to be reasonably

fast to access even if there are thousands of top�level variables� �We�ll use a special trick to make

normal accesses to top�level variable bindings very fast at run time� but we want to make them

reasonably fast at compile time as well� and hash tables are good for that�

Suppose we evaluate the following expressions at the top level� to de
ne and initialize a couple

of variables�

	define quux �fubar��

	define 	double x� 	� x x��

This will modify the toplevel environment by adding bindings for quux and double� in addition

to what�s already there�

Chapter ��� A Simple Scheme Compiler ���

���

� �

� �

$�� �

�������������������� �

� toplevel env� � �

�������������������� ������������ �

� cons � ���������������� binding � �

�������������������� ������������ �

� � � value � ��������������closure for cons� �

� � ������������ �

� � name � cons � �

� � ������������ �

�

� � � ������������ �

�������������������� � binding � �

� quux � ��������������������������� �

�������������������� value � ��������������fubar� �

� � � ������������ �

� � name � quux � �

� � ������������ �

� � �

�

� � � ������������ �

�������������������� � binding � ������������ �

� double � ��������������������������� � closure � �

�������������������� value � ���������������������������� �

� � � ������������ envt � ������������

� � name � double � ������������

� � ������������ proc � ���������� ���

� � ������������

Several things to note�

The representation of the hash table itself may not really be a simple array of name�value

pairs� but I didn�t want to clutter up the picture with over�ow buckets and whatnot�

In principle� we don�t need to have pointers to separate binding objects� We could just store

the values of bindings right in the table� using the value
elds of the name�value pair to hold

the actual variable values� �After all� a binding is really just a location with a name� used

Chapter ��� A Simple Scheme Compiler ���

to hold a value� It will turn out to be convenient for our implementation to have separate

objects that hold the values�

The occurrences of symbol names in the picture would really be pointers to symbol objects� and

the string �fubar� would really be an object itself as well� As usual� we selectively abbreviate

our pictorial representation to avoid cluttering things up�

We refer to the toplevel binding objects as objects� but they�re not Scheme objects	standard

Scheme doesn�t give you any way to get a pointer to one of these and play with it from inside

the language� These �objects� are objects in the sense that they�re allocated on the heap and

referred to via pointers by the compiler and by compiled code� but they�re not �
rst class�� �An

extended version of the Scheme language may let you get at them from inside the language�

but that�s not standard�

���� Compiling Code for Literals

When the compiler compiles code for a literal� like #foo or �foo� or �� in the following expres�

sion�

	list #foo �foo� ���

it notices which literals the expression will need at run time� and ensures that those literals

will appear in the template of the procedure� It keeps a list of literals needed by the procedure

it�s compiling� and after compiling the code for the procedure� it uses that list to construct the

template that goes with the code�

If foo is the
rst literal encountered� it might be put into the list
rst� and assigned the
rst

free slot in the template �after the code pointer� �foo� might be assigned the second slot� and so

on� In the terminology of language implementation� the template acts as a literal frame� as well as

holding the pointer to the procedure�s code�

After assigning a literal a position in the template� the compiler can generate one or two instruc�

tions that can fetch the value out of the template� by using the address of the template� adding the

o�set of that slot� and loading from the resulting address� Since the template address is guaranteed

to be in the TEMPLATE register� this is probably just a single indexed load instruction� In pseudo�C�

it might look like�

value�register � �	template�register � offset�

Chapter ��� A Simple Scheme Compiler ���

where o�set is computed by the compiler and therefore is probably an immediate operand to

the load instruction that loads the value into the value register�

Notice that here we�re taking advantage of the fact that the compiler runs in our system� and

generates code that�s just data in our system� The code will run in the same heap� and the compiler

can therefore just compute values and put them in the template� and they�ll stay around until that

code is executed� �Life gets a little more complicated if you want to generate code that will be

loaded into a di�erent system and executed there�

� Now we should explain that the literal�state argument to compile is the list of literals seen

so far in compiling a procedure� The return value of compile is intermediate code that includes an

updated literal�state� �

��� Compiling Code for Top�Level Variable References

Because of lexical scoping� it is easy for the compiler to tell the di�erence between a reference to

a top�level variable binding and a reference to a local variable� We�ll talk about that in detail later�

but for now just assume that the compiler knows the di�erence at the point where it generates code

for a variable reference�

When the compiler generates code for a top�level variable� it can usually look up the binding of

that variable in the environment that the code is being generated for	the expression that de
nes

the variable has already been executed� so the binding already exists�

The compiler can therefore do the actual lookup at compile time� e�g�� hashing into the hash�

table that implements a toplevel environment and getting a pointer to the actual binding object

that will be referenced at run time�

To make references to this object fast� the compiler can simply put this pointer in the template

for the procedure being compiled� as though it were a literal value�

Be clear on what�s going on here� the compiler can�t look up the value of the variable� because

that�s not known until the moment the variable is referenced at run time� �Before the code is

executed� some other piece of code might run and change the value stored in the binding� But the

identity of the binding itself is known� and can be stashed in the literal frame�

Actually� it�s just slightly more complicated than this� A variable can be used in a procedure

de
nition before the variable itself is de
ned� �This is called a �forward reference�� To get around

Chapter ��� A Simple Scheme Compiler ���

this� the compiler �cheats�� and goes ahead and creates the binding object and its entry in the

toplevel environment before the de
nition of the variable is actually encountered� At the language

level� the variable hasn�t been bound or given a value� but we go ahead and create the unique

binding object and use it in compiling other expressions� For error checking� we put a special value

in the binding to indicate that the binding isn�t �real� yet	we put a reference to some object we

consider �not a real value�� so that we can detect uses of a variable that isn�t really bound�

�In a system designed for maximum safety and early error checking� we could ensure that each

reference to a toplevel variable would check for this value� and signal an error if it�s found� If we�re

not quite so concerned with early error checking� we can wait until somebody attempts to use such

a value� e�g�� by adding it to something� or taking the car of it� and we rely on the normal type

checking of the language to tell us something�s wrong at the point that operation occurs�

Now consider compiling a procedure like

	define 	make�foo�list�

	list #foo �foo���

The compiler will accumulate a list of toplevel bindings and literals needed for the procedure�

namely a string �foo�� the symbol foo� and toplevel binding of the symbol list� These will be

put in the template for the procedure� in the
rst� second� and third slots after the code pointer�

The code generated for this procedure �assuming right�to�left evaluation will be something like�

	fetch�literal �� � get string �foo� from template slot �

	push� � push it on eval stack

	fetch�literal �� � get symbol foo from template slot �

	push� � push it on eval stack

	fetch�literal �� � get toplevel binding of list from template slot �

	t�l�bdg�get� � extract value from binding

	apply� � 	tail��call list

Notice� of course� that we�ve made our intermediate code representation more concrete now	we

use slot numbers as the arguments to fetch�literal� and we explicitly get the value of the toplevel

variable from the toplevel binding object in the value register� For setting the value in a binding�

we�ll use a di�erent intermediate code instruction� t�l�bdg�set �t�l�binding�set expects the

value register to hold a pointer to a toplevel binding object� it extracts the value of the binding�

and leaves that value in the value register�

Chapter ��� A Simple Scheme Compiler ���

� Now we can explain more about literal states	we accumulate a list of literal values and

top�level variable bindings that must be accessible when the procedure runs� �

By now it should be very clear how you would translate each of these little operations in our

intermediate representation into a few assembly�language instructions�

� need picture� �

���� Precomputing Local Variable Lookups using Lexical Scope

We can�t really look up local variable bindings at compile time the way we can toplevel

bindings	local variable bindings don�t exist yet when we�re compiling the expressions that create

and use them� �Consider the fact that every time you enter a let� or call a procedure that binds

arguments� a new binding environment frame is created� Code that executes in such environments

will see a di�erent binding environment frame in the environment register each time it runs�

What we can do is take advantage of lexical scope to precompute most of the search for a

variable in an environment�

Consider the execution of this procedure�

	lambda 	x y�

	let 		a �some�expression�

	b �some�expression���

	list a b x y���

When we compute the arguments to the call to list� it�s obvious that the
rst and second

variables �a and b will be in the
rst and second slots of the
rst binding environment frame�

pointed directly to by the ENVT register� This is the environment created by the let� The third

and fourth variables �x and y will be in the next environment frame� pointed to by the scope link

of the
rst�

The compiler can compute the lexical address of each variable binding at the point where a ref�

erence to it is�s compiled	that�s the relative location of the variable starting from the environment

register� A lexical address has two parts� the number of environment frames to skip to
nd the

right frame� and the o�set of the binding in that frame� In the above example� the lexical addresses

are�

Chapter ��� A Simple Scheme Compiler ���

a� �
�

b� �
�

x� �
�

y� �
�

�We use the convention that frame numbers start at zero� but slot numbers appear to start at

� because the scope link is in slot ��

The code generated for the reference to a can simply be an indexed load instruction� using the

environment register plus an o�set to grab the value in the
rst variable binding slot� In pseudo�C�

that�s something like

value�register � �	envt�register � offset�

where o�set is probably � �bytes to index past the scope link slot� Slightly more abstractly� its

lexical address is � WHAT� �

The code for the reference to the variable y would involve one level of indirection	
rst the

scope link pointer must be extracted from the
rst environment frame� and then that can be used

for an indexed load to get the value of the second slot of the second frame�

value�register � �	envt�register� � get ptr to �nd envt frame
value�register � �	envt�register � offset�

where o�set is probably � �bytes to index past the scope link and the binding of x�

Given this scheme� accessing a local variable takes time proportional to the number of envi�

ronment frames intervening between between the expression being compiled and the environment

where the referenced variable is de
ned� That�s usually fairly fast� for two reasons�

�� The depth of lexical nesting is usually small	it corresponds to the nesting of binding expres�

sions in the program� and is usually between one and three� an only rarely greater than
ve or

so�

�� Most references that are executed at run time are to variables in the current scope� or maybe a

level or two back from that� �Consider references to variables in inner loops� which constitute

the most frequently�executed code in most programs�

Chapter ��� A Simple Scheme Compiler ���

For these reasons� most references to local variables will take between one and
ve instructions�

To a
rst approximation� the time to reference local variables can be regarded as a small constant�

�A slightly snazzier compiler can reduce this by using more registers� and leaving many values in

registers instead of pushing and popping them from the eval stack� but that�s a more advanced

technique than we want to address here�

������ Lexical Addressing and Compile�Time Environments

Computing lexical addresses is very easy for the compiler� All it needs to do is maintain a

data structure called a compile�time environment� which records the structure of the runtime

environment�

Each time the compiler compiles an expression that creates new bindings� it extends the compile�

time environment to re�ect the change to the environment structure� and when compiling expres�

sions that will execute in that environment� it hands the new compile�time environment to the

recursive call to compile which will compile that expression�

For example� when compiling a let� the compiler dispatches to compile�let� the analogue of

eval�let� which does four things�

�� Compiles code for the initial value expressions� This code executes in the environment outside

the let� so the compile�let uses the environment is was given when making recursive calls

to compile to generate the initial value code�

�� Generates code to create a binding environment and intialize it with those values�

�� Extends the compile�time environment with a new frame� re�ecting the fact that the body of

the let will execute in a new scope including the new bindings�

�� Calls compile�sequence to compile the body of the let� passing it the new compile�time

environment�

Just as the overall recursive structure of the compiler closely resembles the recursive structure

of the interpreter� the role of the compile�time environment is very much like the role of the

environment in the interpreter�

When the interpreter �compiler evaluates �compiles subexpressions that execute in the same

environment as their parent expressions� it hands the recursive invocation the same environment it

was given� When the interpreter �compiler evaluates �compiles an expression in a new environ�

ment� it hands the recursive call the new �compile�time environment�

Chapter ��� A Simple Scheme Compiler ���

The structure of the compile time environment at any point in the compilation process mirrors

the structure of the runtime environment where the code will execute� Unlike the interpreter�s

representation of the environment� however� the compile�time environment doesn�t contain actual

bindings	it can�t� and it doesn�t need to�

In e�ect� we split the interpreter�s environment into two parts with parallel structure� Where

the interpreter�s environements are chains of frames holding name�binding pairs� the compiler splits

those into two chains of frames� the runtime environment� whose frames hold the actual bindings�

and the compile�time environment� whose frames hold the corresponding names�

Consider the expression

	let 		x ��

	y ���

	let 		foo ��

	bar ���

	list foo bar x y���

At the point where 	list a b x y� is compiled or executed� the environment for an interpreted

system appears as shown on the left� below� while the environments for a compiled system appear

as shown on the right�

Chapter ��� A Simple Scheme Compiler ���

INTERPRETED COMPILED COMPILED

	compile time� 	run time�

�$ �$ �$

� � �

����������������� � ������������ � ������������ �

� envt� frame � � � c�t�e�fr�� � � envt� fr�� �

����������������� � ������������ � ������������ �

� �������# � �������# � �������#

����������������� ������������ ������������

� x � � � � x � � � �

����������������� ������������ ������������

� y � � � � y � � � �

����������������� ������������ ������������

� � �

�$ �$ �$

$ $ $

$ $ $

����������������� � ������������ � ������������ �

� envt� frame � � � c�t�e�fr�� � � envt� fr�� �

����������������� � ������������ � ������������ �

� �������# � �������# � �������#

����������������� ������������ ������������

� foo � � � � foo � � � �

����������������� ������������ ������������

� bar � � � � bar � � � �

����������������� ������������ ������������

Note that there is a many�to�one relationship between the compile�time environments and the

run�time environments� a let or lambda expression is compiled once� and the corresponding envi�

ronment frame is created and passed to the recursive calls that compile subexpressions� The code

may be executed many times� however� and each time a run�time environment frame will be created

so that the code for subexpressions can be executed in that environment�

������ A Detailed Example

Taking it step by step� let�s look at the compilation of the expression

Chapter ��� A Simple Scheme Compiler ���

	let 		x �����

	y ������

	let 		foo z��

	� 	� foo x�

	� bar y����

goes as follows� �We�ll assume that this expression occurs at the top level�

Since we�re compiling a top�level expression� we compile it in a compile�time environment that

corresponds to the top�level environment� Toplevel environments are treated specially� because

they�re not created dynamically the way local binding environments� There�s a one�to�one relation�

ship bewteen top�level compile�time environments and the corresponding run�time environments�

We�ll represent the top�level compile�time environment as a special kind of environment frame�

which really just holds a pointer to the top�level runtime environment so that top�level variables

can be looked up�

So we start in a top�level environment� which we�ll depict as 'top�level(� we hand this to

compile along with the expression to compile� compile is the main dispatch that analyzes the

expression� in this case� it analyzes it and dispatches �via compile�list and compile�special�

form to compile�let� the specialized procedure for compiling let expressions�

compile�let compiles the initial value expressions for x and y using compile�multi� which

in turn calls compile recursively� they are compiled in the �top�level environment� which is just

passed along because no new environments have been created yet� In this case it doesn�t matter�

though� because they�re just literals� �The values ���� and ���� get added to the literal list at this

point� Then compile�let generates the code to bind x and y�

So far� the code generated looks like�

	fetch�literal ��� � fetch ����

	push� � push it on eval stack

	fetch�literal ��� � fetch ����

	push� � push it on eval stack

	bind �� � bind � vars 	x and y�
 w�values form eval stack

and the literals list holds ���� and �����

Chapter ��� A Simple Scheme Compiler ���

compile�let then calls compile�sequence to compile the body of the let� but
rst it creates

a new compile�time environment� to represent the fact that the body sequence will execute in the

new runtime environment after x and y have been bound� The structure of this environment is

' x y (�� 'toplevel(

�This is our new� terse way of drawing the box�and�arrow data structure for compile time

environments� I got tired of drawing ascii art�

compile�sequence calls compile recursively to evaluate a sequence of expressions� in this case�

there�s only one expression in the body�

The recursive call to compile dispatches �again via compile�list and compile�special�form

to compile�let� to compile the inner let�

compile�let compiles the initial value expressions using compile�multi� compile�multi calls

compile recursively to compile the one expression in the list� the symbol z� �Again� the same

environment is just passed along� because we haven�t created a new environment�

The recursive call to compile now dispatches to compile�symbol� which looks up the binding

information for the symbol z in the compile�time environment� There�s no binding in the
rst frame

�containing x and y� so the search goes to the second frame� which is the top�level environment� and

the top�level binding is returned� This causes a dispatch to compile�toplevel�var�ref� which

adds the toplevel binding of z to the literals list and generates code to get it from the template and

extract its value at run time�

Then compile�let generates code to bind the fetched value as the local variable foo�

The code generated so far is�

	fetch�literal �� � fetch ����
	push�
	fetch�literal �� � fetch ����
	push�
	bind �� � bind � values 	x and y�
	fetch�literal �� � get toplevel binding 	of z�
	t�l�bdg�get� � get value from 	z#s� binding
	push�
	bind �� � bind one variable 	foo�

Chapter ��� A Simple Scheme Compiler ���

and the literals list contains ����� ����� and the binding of z�

Now compile�let creates a new compile�time environment to represent the environment created

by the inner let� its structure is

' foo (�� ' x y (�� 'toplevel(

and it passes this to compile�sequence to compile the body of the let� compile�sequence calls

compile recursively once� handing it the new environment� to compile the one body expression� 	�

	� foo x� 	� bar y���

The recursive call to compile dispatches �through compile�list to compile�combo� which

recursively calls compile three times� to generate code for the subexpressions 	� bar y�� 	� foo x��

and �� Since no new bindings are being created� the recursive calls are given the same environment�

The recursive call to call 	� bar y� similarly dispatches to compile�combo and compiles y� bar�

and �� Each of these calls dispatches to compile�symbol and the variables are looked up in the

compile�time environment� The lookup for y returns a lexical address of ���� so the intermediate

code generated is

	local�var�ref � ��

The lookup for bar doesn�t
nd any local bindings and returns the toplevel binding so the

binding is added to the literal list and the intermediate code is

	literal�lookup ��
	t�l�bdg�get�

Similarly� the lookup for � doesn�t
nd any local bindings and returns the toplevel binding� so

the binding is added to the literal list and the intermediate code is

	literal�lookup ��
	t�l�bdg�get�

now the call to compile�combo that compiles 	� bar y� can string these three fragments together

to get

Chapter ��� A Simple Scheme Compiler ���

	save�continuation �resume���� � save state for call to �
	local�var�ref � �� � look up y
	push�
	literal�lookup �� � get toplevel binding 	of bar�
	t�l�bdg�get� � get value from bdg 	of bar�
	push�
	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��
	apply� � call �

�resume���

and return that� Notice that for the argument subexpressions� compile�combo inserts 	push�es

to save the values on the eval stack� For the
rst �function position subexpression� it leaves the

value in the value register� which is where it�s expected �by apply�

The recursive call to compile�combo to compile 	� foo x� goes pretty similarly to the one for 	�

bar y�� the main di�erence being that both foo and x are found to be local variables and compiled

appropriately� with the result being the sequence

	save�continuation �resume� �� � save state for call to �
	local�var�ref � �� � look up x
	push�
	local�var�ref � �� � look up foo
	push�
	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��
	apply� � call �

�resume� �

The recursive call to compile the symbol � goes striaghtforwardly to compile�symbol� which

looks up � and
nds that it�s a toplevel variable� the binding is already on the literals list� so the

code generated is�

	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��

and this is returned to the outer invocation of compile combo� It can then string together the

code for the outer � expression� putting a save�continuation at the front and adding an apply

at the end� This code is returned to the inner invocation of compile�let� which appends it to its

code and returns it to the outer invocation of compile�let� which returns the entire code sequence

Chapter ��� A Simple Scheme Compiler ���

	fetch�literal �� � fetch ����
	push�
	fetch�literal �� � fetch ����
	push�
	bind �� � bind � values 	x and y�
	fetch�literal �� � get toplevel binding 	of z�
	t�l�bdg�get� � get value from 	z#s� binding
	push�
	bind �� � bind one variable 	foo�
	save�continuation �resume���� � save state for call to �
	local�var�ref � �� � look up y
	push�
	literal�lookup �� � get toplevel binding 	of bar�
	t�l�bdg�get� � get value from bdg 	of bar�
	push�
	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��
	apply� � call �

�resume���
	save�continuation �resume� �� � save state for call to �
	local�var�ref � �� � look up x
	push�
	local�var�ref � �� � look up foo
	push�
	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��
	apply� � call �

�resume� �
	literal�lookup �� � get toplevel binding 	of ��
	t�l�bdg�get� � get value from binding 	of ��
	apply� � 	tail��call �

����� Preserving Tail�Recursiveness using Compile�Time
Continuations

One very important thing we glossed over just now when describing the workings of the compiler

was when exactly to save continuations� and when not to� It is important to save continuations

before calling procedures� if the callee must return and resume the execution of the caller� This

is not necessary for tail calls� and in fact Scheme requires that continuations not be saved for tail

calls	if we save continuations before tail�calls that happen to implement loops� we may end up

with an unbounded accumulation of unnecessary continuations�

Another important question is when returns should be executed� If a procedure ends in a tail�

call� it is assumed that the callee will do a return� But eventually something actually has to do a

return� and pass control back to its caller �or the caller of its caller��� whatever� This situation

Chapter ��� A Simple Scheme Compiler ���

occurs when the tail expression of a procedure is not another procedure call� e�g�� returning the

value of a variable or a literal�

������� When Should We Save Continuations�

The general rule is that if a procedure call is the last thing a procedure does� no continuation

should be saved	we can just jump into the callee� and since our state was not saved� the callee�s

return will resume our caller� To get this right� we just have to keep track of which expressions are

being compiled in �tail position��

In the procedure

	lambda 	x�
	if 	foo x�

	bar 	quux x��
	baz���

the if expression is in tail position� because the value of the if will be returned as the value of

the procedure� The condition expression 	foo x� is not in tail position� because after it is executed�

control must return to this procedure so that either the consequent expression 	bar 	quux x�� or

the alternative expression 	baz� can be executed�

Note that both the consequent and the alternative expressions are in tail�position� whichever is

executed� that will be the last thing this procedure does� and the value computed will be the result

of this procedure�

On the other hand� if we modify the procedure to always return �f� none of these expressions

is in tail position�

	lambda 	x�
	if 	foo x�

	bar 	quux x��
	baz��

�f�

That�s because now the expression �f is in tail position� not the if expression� whatever the if

does� control must come back to this procedure so that the value �f can be returned�

Chapter ��� A Simple Scheme Compiler ���

Notice that the values to compute the arguments of a combination �procedure call are never in

tail position	after computing them� control must always come back so that the procedure can be

applied� The combination itself may be a tail call� of course� in which case once the arguments are

computed� the apply may happen and control may never return�

To get this kind of right� all that is necessary is that each recursive call to compile should know

whether the code being compiled is going to be used in tail position or not� for this we use a

compile�time continuation� �Fear not	it�s simpler than compile time environments� It�s really just

a �ag that gets passed along to recursive calls to compile� sometimes getting turned o� along the

way�

Keep in mind that tails of tails are in tail positions� but non�tail subexpressions are not� So in

the case of nested if�s where the outer if is in tail position� only the consequent and the alternative

of the consequent and the alternative are in tail position� e�g�� in

	lambda 	�
	if 	if 	a�

	b�
	c��

	if 	d�
	e�
	f��

	if 	g�
	h�
	i���

the tail calls are 	e�� 	f�� 	h�� and 	i�� All of the calls in the
rst inner if must return�

because the value returned must be used by the outer if� The calls to the condition expressions

in the other two inner ifs must also return� because the values must be used to tell which of their

alternative and consequent to use�

For each basic kind of expression� we can tell which subexpressions should be considered tails if

the overall expression is�

For a sequence� only the last subexpression can be a tail	the rest are non�tails�

For let� the initial value expressions for bindings are never tails� and the body is just a

sequence� whose last subexpression can be a tail�

For an if� the consequent and alternative can be tails� but the condition never can�

For a procedure� the body is a sequence that�s always in tail position�

Chapter ��� A Simple Scheme Compiler ���

When we compile something in tail position� we pass compile a �ag saying so� The �ag will be

examined� and passed along to subexpressions if appropriate for compiling the kind of subexpression

in question�

For example� if compile�sequence is handed a �ag saying it should compile for tail position� it

will pass the tail �ag along when calling compile recursively on its last subexpression� For its other

subexpressions� however� it will always pass the non�tail �ag� because they must always return to

execute the next expression in the sequence�

Similarly� compile�if will pass whatever �ag it is given along to when calling compile for its

consequent and alternative subexpressions� but never when compiling its condition expression�

compile�combo will always pass along a non�tail �ag when calling compile on its subexpressions�

but will examine the �ag it�s given to tell whether it should save a continuation before evaluating

all of them�

compile�lambda will always compile body expressions in non�tail position� except for the last

one� which is always compiled in tail position� �For simplicitly� compile�lambda just hands the

whole body to compile�sequence� with a tail �ag�

compile�let� always compiles its initial value expressions in non�tail position� and its body

expressions like a sequence� �For simplicity� it just hands the whole body to compile�sequence�

with whatever �ag it�s given�

��������� Compiling Returns

As mentioned above� when an expression other than a procedure call is a tail of a procedure�

it must be accompanied by a return� That is� every tail of a procedure must be either an apply

�which will call something which will return� perhaps indirectly because of tail calling or a return�

The compiler can handle this by putting ensuring that wherever we generate intermediate code

that is a leaf of the expression graph �e�g�� in compile�variable�ref and compile�literal� we

check the compile�time continuation �ag to see if the expression occurs in tail position� If so� rather

than simply leaving the value in the value register� we also execute a return sequence	a series of

instructions that will grab the values out of the
rst partial continuation on the chain� and restore

them into the registers and evaluation stack to resume the suspended procedure� We have a special

intermediate code instruction that stands for this sequence� called return�

Chapter ��� A Simple Scheme Compiler ���

Consider the following procedure�

	lambda 	a b c�

	if 	if a

	b�

c�

d

	e���

When compiling its body� we dispatch through compile�sequence and recursively call compile

to compile the if in tail position� It recursively calls compile to compile the nested if in non�tail

position� which in turn recursively calls compile to compile a� 	b� and c in non�tail position�

Note that a is a leaf expression� and since it�s in non�tail position� it can just leave its value in

the value register� The subsequent code �the test for false and conditional branch that�s part of the

code for the inner if will expect that value there� so that�s
ne�

The expression 	b� is not in tail position� because it inherits non�tail position from the inner

if� so a continuation must be saved before the call to b� When b returns� its value will be in the

value register and execution will resume at the branch that is part of the if�

Similarly� the expression c is in non�tail position �which it also inherited from the inner if� it

can just leave its value in the value register where subsequent code can
nd it� �In this case� it�s the

value returned by the inner if� and tested by the outer if�s test for false and conditional branch�

The expression d is di�erent� It�s in tail position� and it�s a leaf �not a call� It can�t just leave

it�s value in the register� because it�s the end of the procedure� it must therefore have a return

sequence tagged onto it�

The expression 	e� is just a tail call� which can just call e without saving a continuation�

Whatever e calls can do whatever it wants� and probably something will eventually leave something

in the value register and pop the caller�s continuation�

The code generated for the above procedure is�

Chapter ��� A Simple Scheme Compiler ���

	bind �� � bind args 	a
 b
 and c�
	local�var�ref � �� � get value of a
	push�
	branch�on�false �else���� � compare and maybe br to inner else
	save�continuation �resume����
	local�var�ref � �� � get value of b
	apply� � call b

�resume���
	branch end�

�else���
	local�var�ref � �� � get value of c

�end���
	branch�on�false else�� � compare and may br to outer else
	fetch�literal �� � get toplevel binding of d
	t�l�var�get� � get value of d from binding
	return� � and return it
	branch end��

�else���
	fetch�literal �� � get toplevel binding of e
	t�l�var�get� � get value of e from binding
	apply� � and tail�call it

�end���

�Notice that when we generated the code for the outer else� we generated a branch that can

never be taken� compile�if generates a label for the end of the code� so that after executing

the consequent� control will resume at whatever code follows the if� In the case of this if� the

consequent will always execute a return before encountering the branch� A slightly smarter compiler

would probably recognize this situation� and eliminate the branch�

����� Compiling Top�Level Expressions

We said earlier that the compiler mainly uses recursion to generate intermediate code for nested

expressions� To make this useful� though� at some point the intermediate code for a top�level

expression must be converted into actual executable code and packaged up so that it can be called�

Suppose we interact with our system via a read�eval�print loop where eval is really implemented

by compiling the expression and executing the resulting compiled code�

To make it easy to implement this� it�s nice if there aren�t very many kinds of top�level expressions

that the compiler has to generate code for and be able to actually call� In particular� it�s convenient

if di�erent kinds of expression can be transformed into the same kind of expression� The easy way

to do this is to make all di�erent kinds of executable expressions into expressions that generate

procedures� and then call those procedures�

Chapter ��� A Simple Scheme Compiler ���

If we type

	let 		x ���

	� x x��

to the r�e�p� loop� the r�e�p� loop can simply wrap this up in a procedure expression compile

that and package it up as something executable� and call it� In e�ect the read�eval�print loop will

convert it to

	lambda 	�

	let 		x ���

	� x x��

before compiling it� and call the resulting closure to execute it�

Likewise� expressions like

	set foo quux�

and

	if bar baz�

can be wrapped up as

	lambda 	� 	set foo quux��

and

	lambda 	� 	if bar baz��

Now when we start compiling� we only have to deal with one kind of thing	a whole procedure�

and when we get the resulting code back and package it up to run it� we�ll always be dealing with

the code for a whole procedure� That makes it easy to create an actual closure to call�

The main routine we use to start o� compilation is compile�procedure� which takes an expres�

sion� a compile�time environment� a compile�time continuation� and a literal list as arguments� It

returns intermediate code and an updated literal list for the procedure�

Chapter ��� A Simple Scheme Compiler ���

We take the intermediate code and hand it to the procedure intermediate�code��executable�

code which generates the executable code object� �This may be by translating the sequence of

intermediate code instructions into the equivalent sequences of assembly language instructions� and

running that through an assembler� Before doing the assembly� it may run the intermediate code

through one or more optimization phases�

We take the resulting executable code and the literals list� and hand them to make�template

to create the template object�

Now we can hand the appropriate runtime environment and the template to make�closure and

get back a callable closure for the procedure�

����� Compiling lambdaExpressions Inside Procedures

When we compile a lambda expression� we must generate code that will create a closure at

run time� A very naive way to do this would be to generate code that would call the compiler at

runtime to compile the lambda expression into a procedure� plus a little code to create a closure of

that object in the runtime environment�

Luckily� this is not necessary� and the compiler can do all of the real compilation at compile

time	since the code for the lambda expression will be the same every time it�s executed� and since

lexical scope guarantees that it will always execute in an environment with the same structure�

only one version of the code is needed� and it can be shared among all closures of that procedure�

The template can be shared as well�

The compiler therefore generates code and a template for the lambda procedure� at run time�

the actual code for the lambda expression just makes a closure on the heap and initializes its

environment pointer and template pointer� This code will get the environment pointer from the

environment register �and put it in the environment
eld of the new closure� the template pointer

will be the ponter to the template for the lambda procedure�

To allow this little code sequence to quickly grab the template for the procedure being closed�

the compiler stores a pointer to that template in the template of the procedure which executes the

lambda expression� For example� if a lambda expression is encountered while compiling procedure

foo� the compiler will compile the lambda procedure and store its template in the template of foo�

�While compiling foo� it simply records the pointer to the new lambda procedure�s template as

another literal� Then it will end up in foo�s template like other literals�

Chapter ��� A Simple Scheme Compiler ���

So the code generated for

���
	lambda 	x�

	�����
���

looks like

���
	envt�reg�get� � primitive to copy envt� reg� onto eval stack
	push�
	fetch�literal ��� � grab template pointer for lambda proc
	push�
	make�closure� � code that will create closure w�those values
���

The real trick is in compiling the lambda procedure and stu�ng its template into the template

of the procedure that contains the lambda expression� The compiler just calls itself to generate the

code and template then saves the template in the literal list and generates code like the above to

reference the right literal�

����� Compiling Top�level De�nitions

We said above that we can deal with top�level expressions by turning them all into lambda

expressions� which will have the e�ect of evaluating those expressions when called�

This is a little bit tricky when dealing with top�level de
nitions� because top�level de
nitions

can�t be nested inside lambda expressions in the obvious way	they�d just become local de
nitions�

We therefore have to treat them specially� We use a special procedure� environment�define�

which operates on top�level environments and allows us to create top�level bindings� This is not a

standard Scheme procedure	it�s a special procedure that the compiler can generate calls to� but

normal portable Scheme code cannot use directly�

The read�eval�print�loop will therefore recognize top�level de
nitions and treat them specially�

When it encounters one� the initial�value expression will be wrapped up as a lambda and compiled�

and the results turned into code� a template� and a closure� �The closure is given the runtime

toplevel environment pointer�

Chapter ��� A Simple Scheme Compiler ���

The closure will be called to get a result for the initial value expression� and environment�

define will be used to create and initialize the toplevel variable�

�This might appear at
rst to cause a scoping problem� if the binding isn�t created until after

the initial value expression is compiled� the compiler won�t see the binding� But recall that if we

compile an expression that uses an unde
ned variable� we assume it�s a toplevel variable and create

a binding object for it� and mark that object invalid� If the binding has already been created by

a forward reference in this way� environment�define will just overwrite the marker with a real

value�

Of course� if the top�level de
nition uses procedure de
nition syntax� it is necessary to massage

that into a lambda expression before doing the above massaging and compiling�

����� Interfacing to the Runtime System

In order to support garbage collection �as is required for Scheme� there must be some agreement

between the compiler and the garbage collector� so that the collector can
nd the pointers that the

running program might
nd� and ensure that all objects the program could reach from them are

preserved�

A common way of doing this �used in RScheme and Scheme��� is to have a
xed set of registers

�plus maybe an eval stack that hold all of the root values that the collector needs to know about�

and guarantee that whenever garbage collection occurs� all pointers will be identi
able as such�

Any given register must be known to never contain pointers� to always contain a pointer� or to

contain self�identifying �tagged values that are decodable to see if they�re pointers�

For example� in the straightforward compiled system we�ve described in detail� the VALUE register

and the EVAL stack only contain normal Scheme values� tagged values that can be checked to see if

they�re pointers� On the other hand� the template and procedure� pointers would probably always

contain raw pointers� since they can only point at one kind of thing� and the tags would slow some

things down�

There might also be some other registers� which always contain nonpointers�

����	�� Garbage Collection

Chapter ��� A Simple Scheme Compiler ���

����	���� Safe Points

Many systems �like RScheme and Scheme��� ensure that garbage collection can only happen

when a program is at a well�de
ned �safe point�� not at an arbitrary point in the code� At a safe

point� all pointer values are known to be recognizable� In between safe points� it�s okay for the code

to use values that aren�t properly decipherable by the GC� �For example� a register that normally

contains only tagged values might brie�y hold a raw pointer�

This is easy in a single�threaded system� the GC just keeps some space in reserve� so that it

never runs out of memory between safe points� If an allocation requires dipping into this reserve�

a �ag is set so that a GC will occur at the next safe point�

The usual trick is to ensure that each procedure call and backward branch is a safe point� This

ensures that the a program �or thread reaches safe points periodically�

It�s a little bit trickier in a multithreaded system	you have to make sure that you suspend

threads at safe points� so that if another thread forces a GC while another thread is suspended�

����	���� GC at Any Time

Some systems do not use safe points� and in e�ect make every point in the code a safe point

for collection� They ensure that no matter where a GC occurs �or where a thread was suspended

before the GC occurred� there will be enough information lying around so that the collector can

nd all of the pointers it needs to
nd�

Some compilers do this by restricting the way registers are used and code is generated� �For

example� the Orbit compiler only uses certain registers to hold pointers� and only uses certain others

to hold nonpointers� In addition� all pointers in registers must point directly to the beginning of

an object� array indexing cannot be converted into arbitrary ponter arithmetic by the optimizing

compiler�

Other compilers allow more use of odd representations and more �exible use of registers� so

that values can be
gured out at run time� For example� a register might be assumed to hold

nonpointers� except at points in the code �agged by the compiler� based on its having register

allocated a variable there�

����	�� Interrupts

Chapter ��� A Simple Scheme Compiler ���

����� Advanced Compiler and Runtime System Techniques

������� Inlining Small Procedures

The system we�ve described so far generates fairly slow code� and a major culprit is the frequency

of continuation saving and procedure calls� Even very small� frequently�executed procedures like

eq�� car� cdr� and � require a handful if instructions to call and another handful to return� plus

another handful to save a continuation if it�s a non�tail call� This is much slower that the cost of

similar operations in conventional languages like C or Pascal� in those languages� these simple little

�operations� don�t have the semantics of calls to
rst�class procedures�

Sometimes it is desirable to trade away some of the purity and elegance of a language like

Scheme� and trade reduced �exibility for better performance� One way of doing this is by declaring

frequently�used small procedures not to be rede
nable� and allowing the compiler to compile those

operations inline rather than as procedure calls� In some systems this only works for built�in

procedures that the compiler understands� but in others the compiler is smart enough to inline

user�de
ned procedures if so directed�

In some Scheme systems� you can declare procedures to be inlinable� or use a compiler �ag that

says you promise not to rede
ne the common little procedures that are most valuable to inline� This

means that you can�t change the de
nition of something like � on the �y� but you seldom want to� A

common tradeo� is to avoid inlining any but the most frequently�called procedures during program

development� and once the program is
nished� recompile with lots of inlining� This gives you the

�exibility to modify procedure de
nitions on the �y during debugging� while getting maximum

speed once it�s clear which procedures won�t ever be rede
ned in normal operation�

Some high�tech compilers use advanced techniques to do lots of inlining when it�s safe� without

reducing �exibility much or requiring the user to supply a lot of declarations�

The Self compiler aggressively inlines code� and automatically recompiles the code that is in�

validated by changes to procedure de
nitions� �This compiler is for the language Self� not Scheme�

but similar techniques could be applied to Scheme�

Some compilers currently in development have a special mode for compiling
nished programs

which will not be used with a read�eval�print loop� Such a compiler takes advantage of the fact that

if it can look at the whole program �rather than having parts typed in by the user interactively� it

can tell which variables could ever be modi
ed at run time� �As long as there are no calls to eval

at run time� the compiler can tell that all of the code for the program exists at compile�time� new

Chapter ��� A Simple Scheme Compiler ���

closures may be created at run time� but not totally new procedures� After globally determining

that there is no code in the program that could change the de
nition of a procedure� it is free to

inline the code for that procedure into its callers�

������� Type Declarations and Type Analysis

Another key performance problem with naive implementations of Scheme �or other dynamically

typed languages is that basic operations are generally slow relative to their execution in conven�

tional statically�typed languages� For example� the Scheme procedure � must check the types of its

arguments and �depending on those types execute any of several possible code sequences to add

two numbers� Usually� the checking overhead alone is several times greater than the cost of the

actual addition�

One way of reducing this cost is by extending Scheme to allow the user to declare the types

of some variables� The compiler may be able to use this information to compile fast versions of

operations for values of known types� �This is especially true if common operations are inlined	the

compiler can choose to inline the appropriate version rather than the more general code�

Another way of reducing type checking cost is for the system to automatically infer the types

of some expressions� For example� consider the expression 	� a ���� Since �� is a literal� its type

is known at compile time� If the compiler can inline the � procedure� it may at least omit the type

check of that argument�

A combination of declarations and inferencing can work well� For example� if the user has

declared variable a to be of type �integer�� then the compiler can tell that 	� a ��� is an expression

whose arguments are integers �so no run time type test are necessary there and whose result is an

integer� which may eliminate the need for type checks by the expression that uses the value�

More aggressive schemes are possible for reducing the frequency of dynamic type checks� For

example� the Self compiler aggressively inlines and transforms code so that multiple dynamic type

checks can be collapsed into a single one�

������� Using More Hardware Registers

� blah blah �

Chapter ��� A Simple Scheme Compiler ���

For example� it�s very likely a good idea to use more registers� and either not have an eval

stack or not use it as often� Our simple abstract machine requires arguments to be passed on the

eval stack� which means storing into memory at least once for each argument� and loading back

from memory when arguments are used� Most modern machines have several hardware registers

available for argument passing� and more for holding intermediate values of computations�

If we have a few more registers that can be used for argument passing� we could just leave

the argument values in those known registers� and procedures could expect them there� In many

cases� argument values could be computed in a way that the result is left in the appropriate

argument�passing register� without having to copy it there from somwhere else� Similarly� in many

cases� procedures could leave their arguments in the argument passing registers and use them

there� without actually copying them into a binding environment on the heap� �Even if only a few

registers can be devoted to this� it will account for the large majority of arguments passed� since

most procedure calls are to procedures that take between one and three arguments�

Similarly� in many cases a temporary value generated by evaluating a subexpression could be

left in a register� and then used by another expression� without pushing and popping the eval stack�

This can be a big performance win	it is much faster to operate on arguments and temporary

values that are already in registers� rather than copying them to and from memory all of the time�

Using more registers can make the compiler and runtime system more complicated� If variables

are in registers when continuations are saved� their values must be saved in the continuations and

restored at procedure returns� This requires the compiler to keep track of which registers are in

use at which points� and generate appropriate code� It also complicates the interface between the

compiled code and the garbage collector� the garbage collector must be able to
nd all of the pointer

values that are stored in registers� so that it can
nd all of the reachable objects� The compiler must

therefore record su�cient information that all pointer values can be found at garbage collection

time� �Alternatively� the compiler may record a safe approximation of the information� and require

the collector to make conservative guesses about what�s what�

������	 Closure Analysis

One of the performance problems with a naive implementation of Scheme is that in the general

case� variable bindings must be allocated on the garbage�collected heap� and procedure calls must

be via pointers to closures� This is often much slower than the usual implementation of conventional

programming languages� which don�t have to support lambda� Allocating closures and environments

Chapter ��� A Simple Scheme Compiler ���

on the heap is mainly slow because creating and accessing variable bindings is slower than if the

variables were allocated on a stack or in registers�

A smart Scheme compiler can get rid of most of this overhead by analyzing programs and

noticing that many closures are used in stereotyped ways� and calls to them can be implemented

more cheaply than the naive implementation� Similarly� analysis of expressions may reveal that

most binding environments can�t possibly be captured by closures� and therefore don�t need to be

allocated on the garbage�collected heap� The bindings can be saved in continuations along with

temporary values� or a more conventional stack may be used� or �best of all� the bindings can be

register�allocated�

A simple example of a language�level closure that doesn�t need the fully general naive imple�

mentation is a closure created by a lambda expression that appears in the function position of a

combination�

		lambda 	x�
	� x x��

���

�Recall that constructs like this are often generated by macros that implement binding constructs

like let	this one is equivalent to

	let 		x ��
	� x x��

In this case� we can tell from the fact that the lambda expression appears in the function position

that the closure can�t �escape� and have anything weird done with it� That is� no pointer to the

closure is assigned into a variable binding� or passed to a procedure call� or inserted into a data

structure� It�s clear that the only thing that can happen to this closure is that it will be called� and

then the pointer to it will be �dropped�� i�e�� not passed anywhere else� The closure will therefore

become garbage immediately after it�s executed�

A smart compiler will therefore recognize that all the closure really does is bind its variable and

execute it�s body� it will leave out the code to create the closure and just compile in the equivalent

code	in this case� it will generate the obvious code for a let expression�

�Some compilers always transform let�s and letrec�s into lambda combinations� and rely on

their optimizers to recognize the unnecessary lambda�s and remove them� This may seem backwards�

but it�s nice because the same optimizations work whether the lambda combinations were the result

of transforming a let� or macroexpanding a user�de
ned macro� or written directly by the user� or

Chapter ��� A Simple Scheme Compiler ���

whatever� The more sophisticated the optimizer� the more simply the user can write macros and

procedures� and expect the compiler to sort it all out and generate e�cient code�

Another simple case for closure and environment analyis is binding environments that don�t

have any closures created in their scopes� Suppose that our compiler inlines calls to car� eq�� and

cdr� and consider the expression

	let 		x 	car a��
	if 	eq� 	car x� target�

	car 	cdr x��
�f��

in this case� the body of the let can be compiled into entirely inline code� and it is clear that

there is no possible path of execution that can create a closure that captures x� x can therefore be

allocated in a register for its whole lifetime� making this code much faster�

� separate section� Figure out structure here��� �

Actually� some of these analyses are trickier than they appear� due to the presence of side e�ects

and call�cc�

� Haven�t talked about call�cc yet� �

Consider the expression� where we don�t assume any inlining

	let 		x 	car a���
	if 	eq� 	car x� target�

	car 	cdr x��
	set x 	foo����

At
rst it appears that since there are no lambda�s in the expression� x can be allocated in a

register� and saved in continuations across calls� �E�g�� when calling car� we could just save the

value of x in the continuation and have it restored when car returns� right� Unfortunately� if we

don�t have any guarantees that car won�t be rede
ned in weird ways� then it�s possible that the call

will be to procedure that will �directly or indirectly call call�cc� and capture a continuation that

could be used to return into this procedure any number of times� In that case� we can�t be sure

that we won�t return into this code and modify x� If we did� then each time we returned into this

environment� we should see the latest value of x� This will happen if the value of x is in a normal

binding environment on the heap� but not if it�s in a register that gets saved in a continuation�

Chapter ��� A Simple Scheme Compiler ���

Recall that when we restore a continuation� we just copy the values out into the registers� If we

restore the same continuation multiple times� we�ll just keep copying the same value of x back out�

To get this right� we have to ensure that if there are any assignments to x� then all references

to x go through a pointer to a heap�allocated binding� Then when we save a continuation� we save

this pointer to the binding of x� not the state �value of the binding of x� Every time set or read

the value of x� we go through this indirection to the same binding� and see the latest value�

Because of this� high�tech scheme compilers keep track of which variables are ever set anywhere

in their scopes� and make sure to allocate those variables� bindings on the heap�

In Scheme� it is a common idiom to code iteration as recursion� macros for di�erent looping

constructs often compile into letrec�s with tail�calling lambda expressions�

While this is a very powerful framework for expression various patterns of iteration� a naive

implementation is slow� In most cases� loops created in this way are actually just used as loops�

and it is desirable to compile away the overhead of closure creation and calling� For example�

consider a named let like

	let loop 		x ���

�body�

	if 	� x ���

	loop 	� x �����

that has been transformed to

	let 		loop 	lambda x�

�body�

	if 	� x ���

	loop 	� x �������

	loop ��

We can look at this expression� and if no reference to the variable loop occurs in the �body�

expression� we can tell that we can compile it as a loop�

The analysis here is just slightly more complicated than the one that allows us to optimize

closures that are produced by lambda expressions in function position of a combination�

Chapter ��� A Simple Scheme Compiler ���

When compiling the let� we can keep track of each let variable and see whether it is ever used

for as anything but the name of a procedure to tail�call	if the value of loop is never assigned� and

never read except to call it� then we know that the �calls� to loop don�t really need to be full�blown

closure calls at all� We can inline the code for the body of the loop and compile these calls as jumps

directly to that code�

FOOD FOR THOUGHT	does it matter whether the calls are tail�calls or not� if we just treat

them as procedure calls to a known address� and go ahead and save a continuation with the right

label�

������� Register Allocating Loop Variables for Loops

Notice that register closure analysis is particularly important for loop control variables and

variables for little let�s inside loops� Because Scheme requires that a loop variable be bound again

�to fresh memory at each iteration of a loop� actually allocating them on the heap is expensive� If

it can be determined that the variable is dead at the end of the loop� however� then the variable

can be re�bound at each iteration by simply re�using the same register� �We�re binding the name

to a particular piece of memory	the register	over and over again� and it just happens that these

conceptual rebindings incur no runtime cost�

With good closure analysis� loop conversion� and register allocation� a Scheme compiler can

compile �normal� loops into code that�s just as e�cient as any compiler�s�

������� Conventional Optimizations

Besides the optimizations described above� conventional compiler optimizations are applicable

to optimizing languages like Scheme�

Just as in a FORTRAN or C compiler� data �ow analysis and control �ow analysis can let the

compiler simplify intermediate code and produce better machine code�

������� Stack Caches

Inlining and closure analyisis can greatly reduce the amount of heap allocation in a Scheme

implementation� Allocating all binding environments and continuations on the heap may in�ate

allocation rates by an order of magnitude over the rate of allocation of normal data structures like

Chapter ��� A Simple Scheme Compiler ���

pairs and vectors� With a simple compiler and garbage collector� this can greatly in�ate garbage

collection costs� Despite the high rate at which continuations and environments are allocated� there

are typically relatively few of them live at any given time	the vast majority of them are used very�

very brie�y and then become garbage�

Inlining procedure calls may greatly reduce the allocation of continuations� and closure analysis

may allow most bindings to be allocated in registers instead of on the heap�

Still� it may be desirable to keep most of the continuations and environments from making it to

the normal garbage�collected heap�

A stack cache is an area of memory �or pool of discontiguous chunks of memory that�s used

to for initial allocation of continuations and�or binding environments� in the expectation that most

of them will die quickly� A stack cache caches part of the continuation chain� it�s called a stack

cache because it behaves mostly like a stack� Stack caches may be used for continuatons� with

environments still being allocated on the heap� or a more complex design may be used to keep most

environments from making it to the heap as well�

For the most part� a stack cache is treated like a stack� in that continuations are pushed and

popped as though it were a stack� When a continuation is captured by call�cc� however� the

continuation chain is
rst moved to the heap so that it can be preserved in the usual way� This is

generally a good tradeo�� because call�cc is not typically executed very often� and the stack cache

can behave like a stack most of the time� The large majority of continuations will be reclaimed

very quickly� by popping the stack cache� while a small minority will be moved out to the normal

heap�

Caching binding environments is a little trickier� but the basic principle is the same� most

environments are created in the stack cache� and only moved to the garbage�collected heap when

necessary� i�e�� when a closure is created on the heap� At that moment� the environment is moved

to the heap� one frame at a time� until a frame is reached that is already on the heap� �The code

that does this must ensure that an environment is never copied to the heap twice� destroying the

sharing of outer environements by inner environments created in their scope�

It is not clear how desirable a stack cache for environments is� given a compiler that does a

reasonably good job of closure analysis� Using a stack cache for environments makes closure creation

slower� and if most of the short�lived environments have been eliminated by closure analysis and

register allocation� it may not be worth it�

Chapter ��� A Simple Scheme Compiler ���

There is also some controversy about whether stack caches are worthwhile in general� or whether

a generational garbage collector will take care of the large volume of short�lived data e�ciently�

One interesting point is that a stack cache really is a kind of generational garbage collection

scheme� which exploits the typically short lifetimes of particular kinds of data� �When environments

and continuations are moved to the normal heap� that can be viewed as moving objects from one

generation to the next� This special generation is cheaper than a normal generational scheme�

however� because of the stereotyped structures of continuation chains and binding environments�

A stack cache� because it�s small� can reduce the amount of memory that is used very frequently�

compared to a generational GC without a stack cache� �A stack cache may only be a few kilobytes�

but the youngest generation of a generational GC may be hundreds of kilobytes� or megabytes� For

some cache architectures� frequent reuse of this large an area causes signi
cant cache miss penalties�

�For some other architectures� the misses still occur but the cost is surprisingly low� I believe that

stack caches are nonetheless a good idea� because they never hurt much and may sometimes help

a lot�

Scheme��� has a stack cache that caches both continuations and binding environments� RScheme

has a stack cache for continuations only� and relies on the compiler to compile away most heap

allocation of binding environments� �This may not currently be as e�ective as it should be	the

compiler needs more testing and improvement before it will generate really good code�

Concept Index ���

Concept Index

A
actual parameter ��

apply �standard Scheme procedure� � � � � � � � � � � � � � � � � ��

argument ��

argument variable ��

B
binding contour ��

binding environment ��

block structure diagrams for lets ��

boolean �	

C
control structures ��

D
dynamic scoping �
�

E
equality predicates ��

equality predicates� choosing ��

exiting Scheme� ��

F
formal parameter ��

G
garbage collection �

I
if expressions ��

immediate values �

immutability of numbers �

inde�nite extent �

indenting �

in�nite loops� breaking out of ��

in�nite recursion� breaking out of � � � � � � � � � � � � � � � � � � ��

interactive programming environment � � � � � � � � � � � � � � �

interrupting Scheme ��

L
let �	

lexical scope �	

local variables �	

O
object identity ��

object representation �

operators are procedures �

P
pair�tree�sum �	�

parentheses �

pointers � 	

predicates ��

procedure specialization ���

Q
quitting Scheme ��

R
recovering from mistakes ��

rest lists �

RETURN and ENTER keys ��

return values ��

S
side e�ects ��

special forms ��

structural equivalence ��

syntactic sugar ��

system hangs ��

T
truth �	

type predicates ��

V
value cells �

Concept Index ���

values � 	 variable arity �

i

Table of Contents

� �

� Overview �

��� Scheme� A Small But Powerful Language �

��� Who Is this Book For� �

��� Why Scheme� �

��� Why Scheme Now� �

��� What this Book Is Not �

��� Structure of this Book �

� Introduction �

��� What is Scheme� �Hunk A �

��� Basic Scheme Features ��

����� Code Consists of Expressions ��

������� Parenthesized Pre
x Expressions � � � � � � � � � � � � � � � ��

������� Expressions Return Values� But May Have

Side�E�ects ��

������� De
ning Variables and Procedures � � � � � � � � � � � � � ��

������� Most Operators are Procedures � � � � � � � � � � � � � � � � ��

����� De
nitions vs� Assignments ��

������� Special Forms ��

������� Control Structures are Expressions � � � � � � � � � � � � � ��

����� The Boolean Values �t and �f ��

����� Some Other Control�Flow Constructs� cond� and� and or

� ��

������� cond ��

������� and and or ��

����� Comments �Hunk C ��

����� A Note about Parentheses and Indenting � � � � � � � � � � � � � � � � ��

������� Let Your Editor Help You ��

������� Indenting Procedure Calls and Simple Control

Constructs ��

������� Indenting cond ��

������� Indenting Procedure De
nitions � � � � � � � � � � � � � � � � ��

����� All Values are Pointers to Objects ��

������� All Values are Pointers ��

������� Implementations Optimize Away Pointers � � � � � � ��

ii

������� Objects on the Heap ��

����� Scheme Reclaims Memory Automatically � � � � � � � � � � � � � � � � ��

����� Objects Have Types� Variables Don�t ��

������� Dynamic typing ��

������ The Empty List �Hunk E ��

��� Pairs and Lists ��

����� cdr�linked lists ��

����� Lists and Quoting ��

����� Where the Empty List Got its Name ��

��� Type and Equality Predicates �Hunk G ��

����� Type Predicates ��

����� Equality Predicates ��

����� Choosing Equality Predicates �Hunk I � � � � � � � � � � � � � � � � � � ��

��� Quoting and Literals ��

����� Simple Literals and Self�Evaluation ��

��� Local Variables and Lexical Scope ��

����� let ��

������� Indenting let Expressions ��

����� Lexical Scope ��

������� Binding Environments and Binding Contours � � � ��

������� Block Structure Diagrams for lets � � � � � � � � � � � � � ��

����� let� ��

��� Procedures �Hunk K ��

����� Procedures are First Class ��

����� Higher�Order Procedures ��

����� Anonymous Procedures and lambda ��

����� lambda and Lexical Scope �Hunk M ��

����� Local De
nitions ��

����� Recursive Local Procedures and letrec � � � � � � � � � � � � � � � � � ��

����� Multiple defines are like a letrec ��

����� Variable Arity� Procedures that Take a Variable Number of

Arguments ��

����� apply ��

��� Variable Binding Again ��

����� Identi
ers and Variables ��

����� Variables� Bindings and Values ��

��� Tail Recursion �Hunk O ��

���� Macros ��

���� Continuations ��

���� Iteration Constructs ��

���� Discussion and Review ��

iii

� Using Scheme
A Tutorial� �

��� An Interactive Programming Environment �Hunk B � � � � � � � � � � � � � � ��

����� Starting Scheme ��

����� Making mistakes and recovering from them � � � � � � � � � � � � � � ��

����� Returns and Parentheses ��

����� Interrupting Scheme ��

����� Exiting �Quitting Scheme ��

����� Trying Out More Expressions ��

����� Booleans and Conditionals ��

����� Sequencing ��

����� Other Flow�of�control Structures ��

������� Using cond ��

������� Using and and or ��

������ Making Some Objects �Hunk D ��

������ Lists �Hunk F ���

��� Using Predicates �Hunk H ���

����� Using Type Predicates ���

����� Using Equality Predicates ���

��� Local Variables� let� and Lexical Scope �Hunk J � � � � � � � � � � � � � � � � ���

��� Using First�Class� Higher�Order� and Anonymous Procedures �Hunk

L ���

����� First�Class Procedures ���

����� Higher�Order Procedures ���

��� Interactively Changing a Program �Hunk N ���

����� Replacing Procedure Values ���

����� Loading Code from a File ���

����� Loading and Running Whole Programs � � � � � � � � � � � � � � � � � ���

��� Some Other Useful Data Types ���

����� Strings ���

����� Symbols ���

������� A Note on Identi
ers ���

����� Lists Again ���

������� Heterogeneous Lists ���

������� Operations on Lists ���

��� Basic Programming Examples �Hunk P ���

����� An Error Signaling Routine ���

����� length ���

����� Copying Lists ���

����� append and reverse ���

������� append ���

������� reverse ���

����� map and for�each ���

iv

������� map ���

������� for�each ���

����� member and assoc� and friends ���

������� member� memq� and memv ���

������� assoc� assq� and assv ���

����� Procedure Specialization� Composition� and Currying � � � ���

������� Procedure Specialization ���

��� Discussion and Review ���

� Writing an Interpreter ���

��� Interpretation and Compilation ���

��� Implementing a Simple Interpreter ���

����� The Read�Eval�Print Loop ���

����� The Reader ���

������� Implementing read ���

������� Implementing read�list ���

������� Comments on the Reader ���

����� Recursive Evaluation ���

����� A Note on Snar
ng and Bootstrapping � � � � � � � � � � � � � � � � � ���

������� Snar
ng ���

������� Bootstrapping and Cross�compiling � � � � � � � � � � � ���

����� Improving the Simple Interpreter ���

��� Discussion and Review ���

� Environments and Procedures �	�

��� Understanding let and lambda ���

����� let ���

����� lambda ���

������� define and lambda ���

������� Currying ���

������� Procedures are Closures ���

��� Lambda is cheap� and Closures are Fast ���

��� An Interpreter with let and lambda ���

����� Nested Environments and Recursive Evaluation � � � � � � � � ���

����� Integrated� Extensible Treatment of Special Forms � � � � � � ���

����� Interpreting let ���

����� Variable References and set ���

����� Interpreting lambda and Procedure Calling � � � � � � � � � � � � � ���

������� Mutual Recursion Between Eval and Apply � � � ���

��� Variants of let� letrec and let� ���

����� Understanding letrec ���

v

������� Using letrec and lambda to Implement Modules

� ���

����� let� ���

��� Iteration Constructs ���

����� Named let ���

��� Programming with Procedures and Environments � � � � � � � � � � � � � � � � ���

��� do ���

��� Exercises ���

	 Recursion in Scheme ���

��� Subproblems and Reductions �non�tail and tail calls � � � � � � � � � � � � ���

��� The Continuation Chain ���

��� Exploiting Tail Recursion ���

����� Passing Intermediate Values as Arguments � � � � � � � � � � � � � ���

������� Summing a List ���

������� Implementing length tail�recursively � � � � � � � � � � ���

����� reduce ���

� Quasiquotation and Macros ���

��� quasiquote ���

����� unquote�splicing ���

��� De
ning New Special Forms ���

����� Macros vs� Procedures ���

��� Implementing More Scheme Special Forms ���

����� let ���

����� let� ���

����� cond ���

����� Discussion ���

��� Lisp�style Macros ���

����� Ultra�simple Lispish Macros ���

������� Better Lisp�style Macros ���

������� Problems With Lisp�Style Macros � � � � � � � � � � � � � ���

������� Ugly Hacks Around Name Con�icts � � � � � � � � � � � ���

��� Implementing Simple Macros and Quasiquote ���

����� Implementing Simple Macros ���

����� Implementing quasiquote and unquote � � � � � � � � � � � � � � � � ���

������� Translating backquotes to quasiquote � � � � � � � � ���

������� quasiquote ���

������� define�rewriter ���

������� define�macro ���

��� Procedural Macros vs� Template�
lling Macros � � � � � � � � � � � � � � � � � � ���

��� Programming Examples Using Macros ���

vi

 Records and Object Orientation � � � � � � � � � � � � � � � � � � ���

��� Records ���

����� Data Abstraction ���

����� Implementing Records ���

��� Objects ���

����� Object Orientation ���

����� Implementing a Simple Object System � � � � � � � � � � � � � � � � � ���

������� Generic Functions and Dynamic Dispatch � � � � � ���

������� Inheritance ���

� Other Useful Features ���

��� Special Forms ���

��� Input�Output Facilities ���

����� read and write ���

����� display ���

����� Ports ���

����� with�input�$dots Forms ���

��� Useful Types and Associated Procedures ���

����� Numeric Types ���

������� Floating�Point Numbers ���

������� Arbitrary�Precision Integers ���

������� Ratios ���

������� Coercions and Exactness ���

����� Vectors ���

����� Strings and Characters ���

�� call�with�current�continuation � � � � � � � � � � � � � � � � � ��	

���� Implementing a Better Read�Eval�Print Loop ���

���� Implementing Catch and Throw ���

���� Implementing Backtracking ���

���� Implementing Coroutines ���

���� Implementing Cooperative Multitasking ���

���� Caveats about call�with�current�continuation � � � � � � � � � � � � � ���

�� A Simple Scheme Compiler �	�

���� What is a Compiler� ���

������ What is an Interpreter� ���

������ OK� so what�s a compiler� ���

���� What Does a Compiler Generate� ���

���� Basic Structure of the Compiler ���

���� Data Representations� Calling Convention� etc� � � � � � � � � � � � � � � � � � ���

������ The Registers ���

vii

������ The Evaluation Stack �or Eval Stack� for short � � � � � � � ���

������ The Continuation Chain ���

������ Environments ���

������ Closure Representation and Calling ���

���� Continuations ���

������ Applying a Procedure Doesn�t Save the Caller�s State � � ���

������ Continuation Saving ���

������ An Example ���

������ Generating Unique Labels ���

���� More on Representations of Environments ���

���� Compiling Code for Literals ���

���� Compiling Code for Top�Level Variable References � � � � � � � � � � � � � � ���

���� Precomputing Local Variable Lookups using Lexical Scope � � � � � � ���

������ Lexical Addressing and Compile�Time Environments � � ���

������ A Detailed Example ���

����� Preserving Tail�Recursiveness using Compile�Time Continuations

� ���

������� When Should We Save Continuations� � � � � � � � � � � � � � � � ���

��������� Compiling Returns ���

����� Compiling Top�Level Expressions ���

����� Compiling lambda Expressions Inside Procedures � � � � � � � � � � � � � � ���

����� Compiling Top�level De
nitions ���

����� Interfacing to the Runtime System ���

������� Garbage Collection ���

��������� Safe Points ���

��������� GC at Any Time ���

������� Interrupts ���

����� Advanced Compiler and Runtime System Techniques � � � � � � � � � � ���

������� Inlining Small Procedures ���

������� Type Declarations and Type Analysis � � � � � � � � � � � � � � � � ���

������� Using More Hardware Registers ���

������� Closure Analysis ���

������� Register Allocating Loop Variables for Loops � � � � � � � � � ���

������� Conventional Optimizations ���

������� Stack Caches ���

Concept Index ���

