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Abstract— Epilepsy is a neurological disorder that causes 

unusual behavior, sensations, and, in some cases, loss of 

awareness. It is accompanied by seizures, which are periods of 

abnormal patterns of brain activities. Early detection and 

prediction of the Epileptic seizures are important for providing 

effective instantaneous treatment and reducing the risk of 

injury. This has been an active area of research, fueled by the 

increasing affordability of non-invasive EEG capturing devices 

and the fast evolvement of the machine learning algorithms. 

This study provides an up-to-date review of the recent 

approaches for the prediction of epileptic seizures. Special 

attention is directed towards the feature extraction methods 

and classification algorithms. The commonly-used EEG 

datasets and their availability are noted. The discussed 

approaches range from those which rely on the traditional 

machine learning such as Support Vector Machine (SVM), 

Naïve Bayes, and Linear Discriminant Analysis; to those that 

benefit from the recent deep learning approaches, such as 

Convolutional Neural Network (CNN) and Long Short Term 

Memory. It also includes the hybrid approaches that combine 

traditional and deep learning techniques, such as combining 

CNN with SVM. The study concludes the discussed approaches 

and their limitations by a comparative discussion based on the 

reported performance in terms of sensitivity, false alarm rate 

and prediction time. 
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I.  INTRODUCTION 

Epilepsy is a neurological disorder that is marked by the 
occurrence of seizures. The main cause of epilepsy is a large 
number of small electrical discharges of nerve cells [1]. The 
epileptic seizures cause different changes in the attitude and 
consciousness of the patient, sometimes leading to fatal 
accidents [2]. The epileptic disorder is not specific to a 
certain age group, however, 80% of the patients develop 
epileptic symptoms before the age of 20 specifically in the 
childhood and adolescence periods [3]. A population of 50 
million people around the world is diagnosed with epilepsy. 
Almost 30% of patients do not respond to medical or 
surgical intervention [1].  

These types of epilepsies are of great threat to the 
patients’ lives due to their sudden occurrence. They are also 
the main cause of unease in the patients’ social and personal 
lives. For these reasons, new techniques for epilepsy 

prediction were developed. Such methods would help the 
patient foresee the seizure before its occurrence [4]. 

For a patient of epilepsy, there are four states of the 
brain: inter-ictal, pre-ictal, ictal and post-ictal. The inter-ictal 
state is the normal brain state, the three remaining phases are 
those of the seizure itself. The pre-ictal state marks the 
moments prior to the seizure. During the pre-ictal state, the 
patient may feel few physiological changes such as muscle 
twitches, gastro-intestinal changes, etc. [5]. Such changes are 
called the aura of the seizure. The ictal state is the duration of 
the seizure itself. The post-ictal state is the few moments 
after the seizure ends. It can be considered as the transitional 
state between the ictal and the inter-ictal states [6]. Figure 1 
illustrates the different seizure states 

 

Fig. 1 The states of the epileptic seizure [7]. 

The detection and prediction of seizures differ according 
to the type of state detected. In detection, the features related 
to the ictal and inter-ictal states are extracted, while in 
prediction the pre-ictal features are detected. Prediction is 
epileptic seizure is hard to detect compared to detection. 
Meanwhile, prediction of seizure is of high benefit for 
patient’s safety. Consequently, this study is mainly 
concerned with seizure prediction which involve the 
detection of the pre-ictal state. 

In this paper, different approaches developed for the sake 
of enhancing epilepsy prediction are reviewed. It explains 
those techniques based on the feature extraction and the 
classification methodology. The review also provides a 
classification table of the aforementioned epilepsy prediction 
techniques based on the combination of datasets, the 
preprocessing, feature extraction, and classification 
techniques used. 
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II. SEIZURE PREDICTION MODEL 

The general workflow of the seizure prediction model is 
shown in Figure 2. The acquired signal has to be pre-
processed by removing redundant and irrelevant data. The 
signal is then filtered to remove noise. The most discriminant 
features are extracted from the filtered signal. Finally, a 
classifier is used to detect whether the processed signal is 
classified as one of the seizure states or a normal state. These 
phases are illustrated in the upcoming sections. 

 

Fig. 2 Seizure prediction workflow. 

A. Signal Acquisition 

Recorded epileptic EEG signals can be categorized 
according to the way they are recorded either intracranial 
EEG (iEEG) or scalp EEG (sEEG). The iEEG is recorded 
through invasive electrodes, as they deliver a higher signal-
to-noise ratio and less artifacts compared to scalp EEG data. 
The sEEG signals are obtained through non-invasive 
electrodes. They are highly susceptible to artifacts due to the 
presence of body motion, muscle activity, and electrodes 
movement. They are more challenging to analyze due to the 
low signal-to-noise ratio and the presence of artifacts [8]. 
However, for daily monitoring, the scalp EEG recordings 
have greater potential in terms of safety, applicability, and 
ease of use compared to intracranial electrodes. 

Researchers require reliable epileptic datasets to 
benchmark new techniques. Several datasets are publicly 
available which saves researchers from having to perform 
the signal acquisition step. The CHB-MIT dataset is one of 
the most popular epileptic seizures datasets as it is publicly 
available. It is recorded from 23 pediatric patients through 
the scalp [9]. Another popular dataset is the intracranial 
Freiburg dataset which is recorded from a wider range of 
adults through invasive electrodes [10]. This dataset is not 
publically available anymore, as it was merged among other 
epileptic datasets into the European Epilepsy Database [11], 
which is available with charges. Other private datasets are 
used individually by some researchers. 

B. Pre-processing 

Preprocessing is a critical step after the signal 
acquisition. Almost all the scalp EEG signals recorded 
contain noise and artifacts arising from variant sources [12]. 
Such artifacts can be categorized into three main types: 
physiological, experimental and environmental. As a 
consequence, filtering is essential before moving to the next 
step in the seizure prediction model [13]. The filtering 
methodology is different depending on the type of artifacts 
or noise. One of the methods applied is the manual artifacts 
removal in which the noise is visually examined and rejected 
by selecting the artifacts intervals. Filters are also used in the 
removal of the artifacts such as bandpass, low pass, and high 
pass filters, by selecting a certain band frequency to be 

rejected. Mathematical algorithms such as Independent 
Component Analysis (ICA), Principle Component Analysis 
(PCA) and EOG subtraction are used in artifacts removal 
[14]. In [15], the preprocessing of the prediction model was 
discussed in more details.  

C. Feature Extraction 

Passing high dimensionality vector to a classifier may 
have adverse effects on output quality. Feature extraction 
techniques are required to extract the most important features 
from the input signal and thus, improving classification 
accuracy. The features can be extracted from: one single 
channel (univariate) [16], two channels (bivariate) [17] or 
from multiple of channels concurrently (multivariate) [18]. 

 Various feature extraction techniques were examined by 
researchers. These techniques can be categorized according 
to time domain, frequency domains, wavelet based and 
others [19]. In the time domain, the EEG waveforms differ 
from one patient to another. Therefore, the seizure prediction 
algorithm is preferable to be patient-specific [19]. The Zero-
crossing algorithm analyzes EEG dynamics based on the 
successive change of the waveform from negative to 
positive. It is known for its robustness against noise and 
artifacts where it removes some of the irrelevant 
components. Therefore, it was applied successfully in 
previous epilepsy studies [8] [20]. Common Spatial Filters 
(CSP) is one of the popular statistical methods in the time 
domain that is widely used in medical applications based on 
EEG. It is used in prediction models to discriminate between 
pre-ictal and inter-ictal activities by generating a covariance 
matrix that minimizes the variance for pre-ictal waveform 
and maximizes the variance of the other class [15] [21]. 

It is hard for some mathematical models to identify EEG 
activities in the time domain due to the non-stationarity and 
non-linearity of the EEG signals. The frequency domain 
techniques can be used to overcome this problem, such as the 
Fast Fourier Transform (FFT) [19]. Thus, the magnitude and 
phase of the Fourier transform  are used in the prediction of 
the pre-ictal state from EEG activities [22] [23]. 

In some cases, the EEG signal becomes highly non-
stationary such that it is difficult to rely on features extracted 
from the time domain or frequency domain only. In this case, 
the wavelet transform is considered a good choice, as it has 
the capability of reflecting and localizing the characteristics 
of time varying-frequency [24]. Wavelets are considered as 
sub-band decomposition with down-sampling. The epileptic 
seizure signal consists of varying bursting levels. The 
discrimination between these levels can be obtained from the 
wavelet sub-bands [19]. Therefore, wavelets are extensively 
used in many studies for detecting the pre-ictal state [8] [25] 
[26] [27]. Other techniques as deep learning techniques have 
been recently employed in feature extraction as Stacked 
autoencoders [28] and Convolutional Neural Network 
(CNN) [22] [7], Long Short-Term Memory [29].  

D. Classification 

The binary classification problem tends to differentiate 
between pre-ictal and non-pre-ictal states. The pre-ictal state 



can occur before the seizure from few seconds to several 
hours. The non-pre-ictal state encompasses three states; ictal, 
post-ictal, and inter-ictal states. There is a wide spectrum of 
machine learning techniques that ranges from simple to 
highly complicated and computationally challenging 
approaches. Some of these approaches are linear classifiers 
that do not require extensive training process. They can 
obtain reliable results with few data and low computational 
needs. 

Support Vector Machine (SVM) is one of the most 
commonly used techniques in the classification of the binary 
seizure prediction problem [15] [22] [25] [26]. It tends to 
find the best hyperplane that can separate between the two 
classes. This hyperplane tries to maximize the distance 
between the two classes [30]. The Linear Discriminant 
Analysis (LDA) is considered Fisher’s generalized form 
[31]. It is good in separating more than two classes yet it 
fails with complex data structure having non-Gaussian 
distribution. It was used successfully in [21]. Usman et al. 
[15] compared the results of three linear classifiers; SVM, K-
Nearest Neighbor (KNN) and Naïve Bayes. 

On the other hand, if the dataset is growing large, the 
deep learning approaches can be considered better 
alternatives especially, with increasingly affordable 
hardware. Different types of deep networks have been 
broadly used in the classification of pre-ictal state [8], e.g. 
the Convolutional Neural Network (CNN). CNN is used to 
classify high dimensional patterns and multi-variate time 
series [32]. It is a nonlinear multi-layer back propagation 
neural network followed by a sigmoid function. CNN was 
applied by several researchers for the detection of the pre-
ictal state [33]. 

 The Long Short-Term Memory (LSTM) is used in the 
analysis of EEG epileptic seizure prediction [29]. LSTM [34] 
is considered an evolution of the Recurrent Neural Networks 
(RNN) that has been used previously in EEG analysis [35]. 
LSTM deep network model can outperform other deep 
learning techniques with large datasets. It has an advantage 
over CNN which is having the capability of isolating the 
brain’s temporal characteristics throughout different states. 

E. Key Studies 

This section discusses different notable researches in the 
epilepsy prediction field. Table I compares the results of 
these recent approaches in terms of sensitivity (True 
Positive; number of correctly predicted seizures), False 
Alarm Rate (FAR) and Average Prediction Time (APT).  

Elgohary et al. [25] demonstrated a novel methodology 
for the prediction of epileptic seizures. The proposed 
approach used zero crossings calculated from wavelet 
transform detail coefficients. The zero crossings used the 
Haar function to count the detail coefficient of each channel. 
It corresponds to the variation of the direction of the input 
signal between the pre-ictal and the inter-ictal states. Then, 
channel reduction is applied to select the channels of 
significantly high performance and neglecting those of high 
redundancy or irrelevancy. A hybrid channel selection 
approach was used, which combines the characteristics of 

both the filter and the wrapper feature selection models. This 
approach starts with selecting a channel per iteration, then 
each channel is evaluated based on the accuracy obtained 
from SVM. When the optimization terminates, the best 
channels are produced. Finally, SVM is used in the 
classification phase. This approach achieved 96% sensitivity 
for eight patients of the CHB-MIT. 

Usman et al. [15] tackled two main challenges in seizure 
prediction; noise removal and feature extraction. This study 
aimed to detect the pre-ictal of the seizure before the start of 
the onset with sufficient time. The preprocessing was 
performed on two main steps to enhance Signal to Noise 
Ratio (SNR). First, CSP was applied to the EEG signals of 
the 23 channels to acquire one surrogate channel. The 
Empirical Mode Decomposition (EMD) is applied to the 
surrogate channel for further increase of the signal-to-noise 
ratio. As it is well known for being effective in handling non-
stationary and non-linear signals. The Statistical features 
were extracted in the time domain, whereas, spectral features 
are obtained from the frequency domain. The extracted 
features are then fed into a classifier to discriminate between 
pre-ictal and inter-ictal states. Three different classifiers were 
compared; K-Nearest Neighbor (KNN), Naïve Bayes, and 
SVM. The SVM classifier gave the highest sensitivity 
compared to others. The approach was applied on 22 
subjects from the CHB-MIT dataset where it achieved 
92.23% sensitivity with average prediction time 23.6 minutes 
before the seizure onset. 

Alotaiby et al. [21] used CSP for feature extraction and 
dimension reduction. The extracted features were passed to 
Linear Discriminant Analysis (LDA) classifier, to 
differentiate between pre-ictal and inter-ictal stages. This 
study examined three prediction interval locations; 60, 90, 
and 120 minutes with interval lengths 3, 5, and 10 minutes. 
The best prediction performance was obtained with 3 
minutes pre-ictal size. The proposed approach was applied 
on all patients of the CHB-MIT database. This approach 
achieved 89% average sensitivity, and 0.39/hour average 
false prediction rate, with 68.71 minutes average prediction 
time. One of the main challenges of seizure prediction is the 
ability to detect seizures prior to the onset with sufficient 
time. Though this study achieved good results yet, its main 
drawback is that it detects pre-ictal state just before the 
seizure begins. Another drawback is that it involved the 
testing data during the training process where CSP features 
are extracted from both training and test data. 

Zandi et al. [36] proposed an approach that predicts 
seizures by roughly calculating the probability distribution of 
certain positive zero crossing intervals recorded from EEG. 
A new patient-tailored approach was discussed in the new 
version of the paper [20]. It depends on the usage of 
variational Gaussian Mixture Models of the zero-crossing 
intervals in the scalp EEG signals.  

The workflow in [20] goes as follows: the data is divided 
into epochs of 15 seconds each with no overlapping. Each 
epoch constructs a histogram of a number of bins that 
contain the positive zero crossing intervals in such epoch. 
After that, bins differentiating between inter-ictal and pre-



ictal states are chosen. The Bayesian Gaussian Mixture 
Model (GMM) was used for classification. Within the final 
steps, the patient-specific threshold was compared with a 
combined index that was calculated and compared based on 
a sequence of decisions taken on the selected bins.  

The basic idea is to inspect the differences and 
similarities between the epochs of the EEG signals and pre-
recorded references of inter-ictal and pre-ictal data. 
However, some limitations faced this approach, one of which 
was the short and discontinuous recordings of some of the 
patients. Another limitation was the low number of seizures 
for some of the patients. 

This approach was tested on 20 patients of the Vancouver 
General Hospital dataset. It reached a sensitivity level of 
88.34%, an average time of prediction of 22.5 minutes and a 
0.155/hour false prediction rate. 

In [8], Tsiouris et al. combined the Long Short-Term 
Memory (LSTM) networks with CNN for seizure prediction. 
They extracted a wide range of frequency and time domain 
features; statistical moments (mean value, variance, 
skewness, kurtosis), zero crossings, wavelet transform 
coefficients, PSD, cross-correlation, and graph theory. This 
approach was applied to the CHB-MIT dataset. The use of 
the deep learning LSTM achieved sensitivity higher than 
99% with a very low false alarm rate of 0.11–0.02 per hour. 
This approach applied segment shuffling to overcome the 
overfitting problem which arose due to the few numbers of 
pre-ictal segments. This shuffling resulted in being unable to 
calculate the average prediction time which is the interval 
from the pre-ictal detection to the seizure onset.  

In [22] a hybrid technique that combines CNN with SVM 
for prediction of seizures was proposed. The time-frequency 
features are extracted using the Fast Fourier transform. At 
the same time, more information was retrieved from pre-
processing the alpha, beta, and theta frequency bands. This 
information is then used to generate two dimensional EEG 
images that are then fed into the CNN. The CNN (based on 
feed-forward neural networks) has the ability to produce 
high-level features. Both the high-level features and the 
frequency-time features are passed to the SVM classifier to 
discriminate between pre-ictal and non-pre-ictal images. This 
approach achieved (97.86±0.5) % accuracy, (96.47±0.5) % 
and (98.81±0.5) % specificity on the dataset of Mayo Clinic 
and University of Pennsylvania.  

III. DISCUSSION 

Table II highlights the most commonly used techniques 
in each phase. As concluded, the majority of studies relied on 
the CHB-MIT scalp dataset which is publicly available. 
Among the reviewed studies, only Ref. [15] discussed 
explicitly the preprocessing of the prediction model. There is 
a wide range of feature extraction techniques that can be 
categorized according to the domain used. It is noticeable 
that the wavelet transform is used extensively since it can 
handle characteristics of frequency and time domain. As for 
classification, SVM is the most popular linear classifier. The 
deep neural network can be used in both feature extraction 
and classification phases. CNN proved its efficiency in the 

extraction of high-level features and also in discrimination 
between pre-ictal and inter-ictal states. Some of the 
challenges that are still open topics and must be taken into 
consideration by researchers are: 

1) Scalp EEG versus intracranial EEG Datasets 
To check the robustness of proposed approaches, they 

must be broadly examined on more than one dataset. Some 
datasets are recorded from the scalp (sEEG) as the CHB-
MIT database, where it mainly consists of pediatric patients. 
Others provide intracranial EEG (iEEG) data that are 
recorded through invasive electrodes. These two types of 
EEG have different characteristics. Some researchers 
examined their approaches for the two different types of 
recorded EEG and this may be a trend in future for obtaining 
generalized approaches that can fit for both types of signals; 
sEEG and iEEG. 

2) Pre-ictal versus inter-ictal recordings 
One of the main challenges facing the classification 

problem is the imbalance between classes of the given 
dataset where one class has many instances compared to the 
other [37]. Epileptic seizure datasets also encounter this 
problem where the recordings of pre-ictal data are extremely 
few compared to inter-ictal data [33]. This may lead to an 
overfitting problem with some classifiers. Balancing the 
amount of data of the two classes must be investigated in 
depth by researchers. 

3) Compromising false alarm versus prediction rate 
A seizure prediction system may encounter annoying 

false prediction alarms. It is important to minimize the 
average false alarm rate. Meanwhile, it is more critical to 
detect a pre-ictal state within a suitable time before the 
seizure occurs as a missed seizure may affect the patient’s 
safety. 

4) Sensitivity versus high computation and time 

consumption 
Some techniques provide high sensitivity, meanwhile, 

they suffer from high computation and time. As data 
increase, the deep learning algorithms reveal their power in 
analyzing biomedical signals as EEG signals [8]. Though 
using deep learning techniques help in improving system 
performance, yet they suffer from high complexity and huge 
time consumption. A reliable prediction system requires 
compromising these two paradigms. 

5) Prediction time 
The seizure must be predicted prior to onset with 

sufficient time, to allow caregivers to proceed with 
meditations or allow the patient to make his/her precautions 
so as not to get injured. Many existing seizure prediction 
studies face this problem. Unfortunately, this is not explicitly 
indicated in most of the research work we have discussed in 
spite of its importance. 

IV. CONCLUSION 

The prediction time of seizures is a crucial issue in 
helping patients and their caregivers to keep them safe from 
the sudden death caused by seizures and to protect them 



from being injured. This requires an efficient analysis of 
EEG signals to accurately detect the pre-ictal state of the 
seizure with a suitable time before the seizure starts.  

This paper managed to review the different machine 
learning approaches that are used along with the different 
phases of the seizure prediction model. It also compares the 
results of different approaches as shown in Table I. The 
taxonomy of machine learning approaches that are reviewed 
in this paper is illustrated in Table II.  
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TABLE I. RESULTS OF SEIZURE PREDICTION APPROACHS IN LITERATURE 

TABLE II. TAXONOMY OF EPILEPTIC PREDICTION TECHNIQUES 

System Components Studies 
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Frequency 

domain 

Fourier            
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Time domain 
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Zero-crossing            

Descriptive Statistics             

Inferential Statistics*            

Freq.-Time Wavelet            

 Graph theory            
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* Cross correlation 
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(h-1) 
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(min) 

Tsiouris et al. 
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correlation, and graph theory 

LSTM + CNN CHB-MIT 24 99.00 0.11–0.02 - 

Elgohary et al. 

[25] 
Zero-crossing of wavelet SVM CHB-MIT 8 96.00 - - 

Agboola et al. 
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CSP LDA CHB-MIT 24 89.00 0.39 68.71 

Agarwal  

et al. [22] 
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University of Pennsylvania 
8 96.47 - - 

Chu et al. [23] Fourier Transofrm SVM 
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86.67 0.367 45.3 
Seoul National University 3 

Khan et al. 
[27] 

Wavelet Transform CNN CHB-MIT 22 87.8 0.142 5.832 

Daoud et al. 
[29]  

Deep convolutional Autoencoder 
Bidirectional 

LSTM 
CHB-MIT 8 99.72 0.004 60.00 

Zandi et al. 
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