Selection

2004 Goodrich, Tamassia Selection

The Selection Problem

N

Given an integer k and n elements Xy, X5, ..., X,
taken from a total order, find the k-th smallest
element in this set.

Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962524679

Can we solve the selection problem faster?

© 2004 Goodrich, Tamassia Selection 2

Quick-Select

Quick-select is a randomized
selection algorithm based on

N

the prune-and-search §
paradigm:
= Prune: pick a random element x
(called pivot) and partition S into
» L: elements less than x X
+ E: elements equal x \ Y oA Y S\ Y /
+ G: elements greater than x L E G
= Search: depending on k, either k < IL| ‘ k> [L[+|E]
answer is in E, or we need to k’=k-|L|-|E]
recur in either L or G
L] <k <|L[+|E]
(done)

© 2004 Goodrich, Tamassia Selection 3

]

Partition L

N

We partition an input Algorithm partition(S, p)
seqguence as in the quick-sort Input sequence S, position p of pivot
algorithm: Output subsequences L, E, G of the
W int h elements of S less than, equal to,
. €remove, m-turr, €ac or greater than the pivot, resp.

element y from S and

m WeinsertyintolL, EorG,
depending on the result of
the comparison with the

L, E, G <« empty sequences
X <~ S.remove(p)
while =S.isEmpty()

y <— S.remove(S.first())

pivot X ify < x
Each insertion and removal is L.addL ast(y)
at the beginning or at the else if y = X
end of a sequence, and E.addLast(y)
hence takes O(1) time else {y>x}
Thus, the partition step of G.addLast(y)
quick-select takes O(n) time returnL, E, G

© 2004 Goodrich, Tamassia Selection 4

Quick-Select Visualization

" @ An execution of quick-select can be visualized by a
recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

k=5,5=(7 4932651 8)

N

([k=2,5=(7 4 96 538)]

(k=2,5=(7 4 6 5)]

k=1,S=(7 6 5)]

L5 }

© 2004 Goodrich, Tamassia Selection

Expected Running Time

Consider a recursive call of quick-select on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761] | 72943761]
(2431) (797) 1) (7294376)
Good call Bad call

A call is good with probability 1/2
s 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~)

Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Selection 6

Expected Running Time,
Part 2

& Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
s E(X+Y)=EX)+E(Y)
s E(cX)=CcE(X)
Let T(n) denote the expected running time of quick-select.
By Fact #2,
s T(n) <T(3n/4) + bn*(expected # of calls before a good call)
By Fact #1,
s T(n)<T(3n/4) + 2bn
Thatis, T(n) is a geometric series:
s T(n) < 2bn + 2b(3/4)n + 2b(3/4)’n + 2b(3/4)%*n + ...
#® So T(n) is O(n).
We can solve the selection problem in O(n) expected

time.
© 2004 Goodrich, Tamassia Selection 7

N

Deterministic Selection

We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

m Divide S into n/5 sets of 5 each
s Find a median in each set
= Recursively find the median of the “baby” medians.

N

Min size
forL .

' ' Min size
- for G

U1-l>:wl\)|—=
U'I-hwll\)l—l

© 2004 Goodrich, Tamassia Selection 8

