
© 2004 Goodrich, Tamassia, Dickerson Splay Trees 1

Splay Trees

6

3 8

4

v

z

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 2

all the keys in the yellow

region are 20

all the keys in the blue

region are 20

Splay Trees are Binary Search Trees

BST Rules:
 entries stored only at

internal nodes

 keys stored at nodes in the
left subtree of v are less
than or equal to the key
stored at v

 keys stored at nodes in the
right subtree of v are
greater than or equal to the
key stored at v

An inorder traversal will
return the keys in order

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

note that two keys of

equal value may be well-

separated

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 3

Searching in a Splay Tree:
Starts the Same as in a BST

Search proceeds down
the tree to found item
or an external node.

Example: Search for
time with key 11.

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 4

Example Searching in a BST,
continued

search for key 8, ends at
an internal node.

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 5

Splay Trees do Rotations after
Every Operation (Even Search)

new operation: splay
 splaying moves a node to the root using rotations

 right rotation
 makes the left child x of a node y into

y’s parent; y becomes the right child
of x

y

x

T1 T2

T3

y

x

T1

T2
T3

 left rotation
 makes the right child y of a node x

into x’s parent; x becomes the left
child of y

y

x

T1 T2

T3

y

x

T1

T2
T3

(structure of tree above y

is not modified)

(structure of tree above x

is not modified)

a right rotation about y a left rotation about x

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 6

Splaying:

is x the

root?
stop

is x a child of

the root?

right-rotate

about the root

left-rotate about

the root

is x the left

child of the

root?

is x a left-left

grandchild?

is x a left-right

grandchild?

is x a right-right

grandchild?

is x a right-left

grandchild?

right-rotate about g,

right-rotate about p

left-rotate about g,

left-rotate about p

left-rotate about p,

right-rotate about g

right-rotate about p,

left-rotate about g

start with

node x

 “x is a left-left grandchild” means x is a left child of its

parent, which is itself a left child of its parent

 p is x’s parent; g is p’s parent

no

yes

yes

yes

yes

yes

yes

no

no

yes zig-zig

zig-zag

zig-zag

zig-zig

zigzig

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 7

Visualizing the
Splaying Cases

zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4T3

T2

x

T1

zig

x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 8

Splaying Example
let x = (8,N)

 x is the right child of its parent,
which is the left child of the
grandparent

 left-rotate around p, then right-
rotate around g

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

x

g

p

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)(8,N)

(7,P)

(10,U)

x

g

p (10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

g

p

1.
(before

rotating)

2.
(after first rotation) 3.

(after second
rotation)

x is not yet the root, so
we splay again

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 9

Splaying Example, Continued

now x is the left child of the root

 right-rotate around root

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

1.
(before applying

rotation)

2.
(after rotation)

x is the root, so stop

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 10

Example Result
of Splaying
tree might not be more balanced

e.g. splay (40,X)

 before, the depth of the shallowest leaf is
3 and the deepest is 7

 after, the depth of shallowest leaf is 1
and deepest is 8

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T)

(35,R)

(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P) (36,L)(10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T)

(35,R)

(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

before

after first splay after second
splay

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 11

Splay Tree Definition

a splay tree is a binary search tree where a
node is splayed after it is accessed (for a
search or update)

 deepest internal node accessed is splayed

 splaying costs O(h), where h is height of the tree
– which is still O(n) worst-case
 O(h) rotations, each of which is O(1)

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 12

Splay Trees & Ordered
Dictionaries

which nodes are splayed after each operation?

use the parent of the internal node that was actually
removed from the tree (the parent of the node that the
removed item was swapped with)

remove(k)

use the new node containing the entry insertedput(k,v)

if key found, use that node

if key not found, use parent of ending external node
get(k)

splay nodemethod

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 13

Amortized Analysis of
Splay Trees

Running time of each operation is proportional to time
for splaying.

Define rank(v) as the logarithm (base 2) of the number
of nodes in subtree rooted at v.

Costs: zig = $1, zig-zig = $2, zig-zag = $2.

Thus, cost for playing a node at depth d = $d.

Imagine that we store rank(v) cyber-dollars at each
node v of the splay tree (just for the sake of analysis).

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 14

Cost per zig

Doing a zig at x costs at most rank’(x) - rank(x):

 cost = rank’(x) + rank’(y) - rank(y) - rank(x)
< rank’(x) - rank(x).

zig

x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 15

Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most
3(rank’(x) - rank(x)) - 2

y

x

T1 T2

T3

z

T4

zig-zig y

z

T4T3

T2

x

T1

zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 16

Cost of Splaying
Cost of splaying a node x at depth d of a tree
rooted at r:

 at most 3(rank(r) - rank(x)) - d + 2:

 Proof: Splaying x takes d/2 splaying substeps:

.2))(rank)(rank(3

2)/(2))(rank)(rank(3

2)2))(rank)(rank(3(

cost cost

0

1

2/

1

2/

1

dxr

ddxr

xx i

d

i

i

i

d

i

© 2004 Goodrich, Tamassia, Dickerson Splay Trees 17

Performance of
Splay Trees

Recall: rank of a node is logarithm of its size.

Thus, amortized cost of any splay operation is
O(log n)

In fact, the analysis goes through for any
reasonable definition of rank(x)

This implies that splay trees can actually
adapt to perform searches on frequently-
requested items much faster than O(log n) in
some cases

