## Splay Trees



## Splay Trees are Binary Search Trees

- BST Rules:
- entries stored only at internal nodes
- keys stored at nodes in the left subtree of $v$ are less than or equal to the key stored at $v$
- keys stored at nodes in the right subtree of $v$ are greater than or equal to the key stored at $v$
- An inorder traversal will return the keys in order


# Searching in a Splay Tree: Starts the Same as in a BST 

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.


## Example Searching in a BST, continued

* search for key 8, ends at an internal node.


## Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
- splaying moves a node to the root using rotations
$\square$ right rotation
- makes the left child $x$ of a node $y$ into $y$ 's parent; $y$ becomes the right child of $x$

(c) 2004 Goodrich, Tamassia, Dickerson
$\square$ left rotation
- makes the right child $y$ of a node $x$ into $x$ 's parent; $x$ becomes the left child of $y$


Splay Trees

## 

 parent, which is itself a left child of its parent

## Splaying Example

- let $x=(8, \mathrm{~N})$
- $x$ is the right child of its parent, which is the left child of the grandparent
- left-rotate around $p$, then rightrotate around $g$



## Splaying Example, Continued



## Example Result of Splaying

tree might not be more balanced
e.g. splay $(40, \mathrm{X})$

- before, the depth of the shallowest leaf 3 and the deepest is 7
- after, the depth of shallowest leaf is 1 and deepest is 8


Splay Trees


## Splay Tree Definition

a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)

- deepest internal node accessed is splayed
- splaying costs $O(h)$, where $h$ is height of the tree
- which is still $\mathrm{O}(\mathrm{n})$ worst-case
- $\mathrm{O}(\mathrm{h})$ rotations, each of which is $\mathrm{O}(1)$


## Splay Trees \& Ordered Dictionaries

which nodes are splayed after each operation?

| method | splay node |
| :--- | :--- |
| get(k) | if key found, use that node <br> if key not found, use parent of ending external node |
| put(k,v) | use the new node containing the entry inserted <br> remove(k) |
| use the parent of the internal node that was actually <br> removed from the tree (the parent of the node that the <br> removed item was swapped with) |  |

## Amortized Analysis of Splay Trees



- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v .
Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node $v$ of the splay tree (just for the sake of analysis).

Cost per zig


Doing a zig at $x$ costs at most $\operatorname{rank}^{\prime}(x)-\operatorname{rank}(x)$ :

$$
\begin{gathered}
\text { - cost }=\operatorname{rank}^{\prime}(x)+\operatorname{rank}^{\prime}(y)-\operatorname{rank}(y)-\operatorname{rank}(x) \\
\leq \operatorname{rank}^{\prime}(x)-\operatorname{rank}(x)
\end{gathered}
$$

Cost per zig-zig and zig-zag


Doing a zig-zig or zig-zag at $x$ costs at most 3(rank'(x) - rank(x)) - 2


## Cost of Splaying

Cost of splaying a node $x$ at depth $d$ of a tree rooted at r:

- at most $3(\operatorname{rank}(r)-\operatorname{rank}(x))-d+2$ :
- Proof: Splaying $x$ takes $d / 2$ splaying substeps:

$$
\begin{aligned}
\operatorname{cost} & \leq \sum_{i=1}^{d / 2} \operatorname{cost}_{i} \\
& \leq \sum_{i=1}^{d / 2}\left(3\left(\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)\right)-2\right)+2 \\
& =3\left(\operatorname{rank}(r)-\operatorname{rank}_{0}(x)\right)-2(d / d)+2 \\
& \leq 3(\operatorname{rank}(r)-\operatorname{rank}(x))-d+2 .
\end{aligned}
$$

## Performance of Splay Trees

$\diamond$ Recall: rank of a node is logarithm of its size.

* Thus, amortized cost of any splay operation is O(log n)
- In fact, the analysis goes through for any reasonable definition of rank(x)
* This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than $\mathrm{O}(\log \mathrm{n})$ in some cases

