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Splay Trees
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all the keys in the yellow 

region are  20

all the keys in the blue 

region are  20

Splay Trees are Binary Search Trees

BST Rules:
 entries stored only at 

internal nodes

 keys stored at nodes in the 
left subtree of v are less 
than or equal to the key 
stored at v

 keys stored at nodes in the 
right subtree of v are 
greater than or equal to the 
key stored at v

An inorder traversal will 
return the keys in order

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

note that two keys of 

equal value may be well-

separated



© 2004 Goodrich, Tamassia, Dickerson Splay Trees 3

Searching in a Splay Tree: 
Starts the Same as in a BST

Search proceeds down 
the tree to found item 
or an external node.

Example: Search for 
time with key 11.

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)
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Example Searching in a BST, 
continued

search for key 8, ends at 
an internal node.

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)
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Splay Trees do Rotations after 
Every Operation (Even Search)

new operation: splay
 splaying moves a node to the root using rotations

 right rotation
 makes the left child x of a node y into 

y’s parent; y becomes the right child 
of x

y

x

T1 T2

T3

y

x

T1

T2
T3

 left rotation
 makes the right child y of a node x

into x’s parent; x becomes the left 
child of y

y

x

T1 T2

T3

y

x

T1

T2
T3

(structure of tree above y 

is not modified)

(structure of tree above x 

is not modified)

a right rotation about y a left rotation about x
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Splaying:

is x the 

root?
stop

is x a child of 

the root?

right-rotate 

about the root

left-rotate about 

the root

is x the left 

child of the 

root?

is x a left-left 

grandchild?

is x a left-right 

grandchild?

is x a right-right 

grandchild?

is x a right-left 

grandchild?

right-rotate about g, 

right-rotate about p

left-rotate about g, 

left-rotate about p

left-rotate about p, 

right-rotate about g

right-rotate about p, 

left-rotate about g

start with 

node x

 “x is a left-left grandchild” means x is a left child of its 

parent, which is itself a left child of its parent 

 p is x’s parent; g is p’s parent

no

yes

yes

yes

yes

yes

yes

no

no

yes zig-zig

zig-zag

zig-zag

zig-zig

zigzig
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Visualizing the 
Splaying Cases

zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4T3

T2

x

T1

zig

x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1
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Splaying Example
let x = (8,N)

 x is the right child of its parent, 
which is the left child of the 
grandparent

 left-rotate around p, then right-
rotate around g

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

x

g

p

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)(8,N)

(7,P)

(10,U)

x

g

p (10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

g

p

1.
(before 

rotating)

2.
(after first rotation) 3.

(after second 
rotation)

x is not yet the root, so 
we splay again
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Splaying Example, Continued

now x is the left child of the root

 right-rotate around root

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

(10,A)

(20,Z)

(37,P)(21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

1.
(before applying 

rotation)

2.
(after rotation)

x is the root, so stop
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Example Result 
of Splaying
tree might not be more balanced

e.g. splay (40,X)

 before, the depth of the shallowest leaf is 
3 and the deepest is 7

 after, the depth of shallowest leaf is 1 
and deepest is 8

(20,Z)

(37,P)(21,O)
(14,J)

(7,T)

(35,R)(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T)

(35,R)

(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P) (36,L)(10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T)

(35,R)

(10,A)

(1,C)

(1,Q)

(5,G)(2,R)

(5,H)

(6,Y)(5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

before

after first splay after second 
splay
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Splay Tree Definition

a splay tree is a binary search tree where a 
node is splayed after it is accessed (for a 
search or update)

 deepest internal node accessed is splayed

 splaying costs O(h), where h is height of the tree 
– which is still O(n) worst-case
 O(h) rotations, each of which is O(1)
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Splay Trees & Ordered 
Dictionaries

which nodes are splayed after each operation?

use the parent of the internal node that was actually 
removed from the tree (the parent of the node that the 
removed item was swapped with)

remove(k)

use the new node containing the entry insertedput(k,v)

if key found, use that node

if key not found, use parent of ending external node
get(k)

splay nodemethod
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Amortized Analysis of 
Splay Trees

Running time of each operation is proportional to time 
for splaying.

Define rank(v) as the logarithm (base 2) of the number 
of nodes in subtree rooted at v.

Costs: zig = $1, zig-zig = $2, zig-zag = $2.

Thus, cost for playing a node at depth d = $d.

Imagine that we store rank(v) cyber-dollars at each 
node v of the splay tree (just for the sake of analysis).
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Cost per zig

Doing a zig at x costs at most rank’(x) - rank(x):

 cost = rank’(x) + rank’(y) - rank(y) - rank(x)
< rank’(x) - rank(x).

zig

x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1
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Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most 
3(rank’(x) - rank(x)) - 2

y

x

T1 T2

T3

z

T4

zig-zig y

z

T4T3

T2

x

T1

zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1
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Cost of Splaying
Cost of splaying a node x at depth d of a tree 
rooted at r:

 at most 3(rank(r) - rank(x)) - d + 2:

 Proof: Splaying x takes d/2 splaying substeps:

.2))(rank)(rank(3

2)/(2))(rank)(rank(3

2)2))(rank)(rank(3(

cost cost 

0
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Performance of 
Splay Trees

Recall: rank of a node is logarithm of its size.

Thus, amortized cost of any splay operation is 
O(log n)

In fact, the analysis goes through for any 
reasonable definition of rank(x)

This implies that splay trees can actually 
adapt to perform searches on frequently-
requested items much faster than O(log n) in 
some cases


